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Abstract

We experimentally test the effects of information quality on regime stability in

a global game of regime change. The game features a payoff structure such that

more dispersed private information induces agents to attack more and reduces regime

stability in the Bayesian Nash Equilibrium. We show that subjects in the lab do not

play as predicted by the theory. Rather, more dispersed information makes subjects

more cautious, increasing regime stability. We show that this finding is consistent with

a modified global game model in which agents engage in level-k thinking. In the level-k

model, information quality affects agents’ actions through a novel channel, which can

reverse the comparative statics from the fully rational model.
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1 Introduction

Global games of regime change are commonly used to analyze important economic phenom-

ena involving elements of coordination, such as currency crises, bank runs, and political

change.1 A central question in this literature – both from a theoretical and an applied per-

spective – is how information quality – the precision of agents’ private information – affects

the probability of a successful coordinated attack.

In this paper, we experimentally test how a change in private information precision

affects regime stability in a standard global game of regime change. Specifically, we consider

a global game in which agents receive private information with certain dispersion. The

payoff structure is such that higher private information dispersion makes agents more likely

to attack in equilibrium and, hence, regime stability decreases.2 Our set-up, therefore, differs

from the majority of other experimental evaluations of global games of regime-change, which

typically compare the effects of private versus public information.

We let subjects play a series of games where they take binary decisions – attack or

not attack. Their payoff from attacking depends both on an underlying state and on the

actions of others. If a sufficient number of agents choose to attack (given the value of

the underlying state), then all attacking agents obtain a discretely higher payoff relative

to not attacking. In addition, the higher the value of the state, the higher the discrete

payoff from a successful attack.3 Finally, agents obtain private signals about the underlying

state with some dispersion. We set up the payoffs of agents to correspond to the literature

on speculative currency attacks, where theory predicts that more dispersed information is

destabilizing (Heinemann and Illing, 2002, Iachan and Nenov, 2015). In this setting, we

1See Morris and Shin, 1998 for currency crises, Rochet and Vives (2004) and Goldstein and Pauzner
(2005) for bank runs, and Edmond (2013) for political change.

2In general, the effect of a change in private information dispersion on regime stability is ambiguous
and depends on the payoff structure that is generated by the underlying economic environment (Iachan and
Nenov, 2015). To provide a clear theoretical prediction to test in a laboratory setting, we opt for a specific
payoff structure that leads to the aforementioned comparative static.

3Therefore, a higher state in our abstract game can be interpreted as a lower value of a common economic
fundamental.
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compare subjects’ behavior in two treatments, one where private information dispersion is

low (“Low Noise treatment”) and one where the information dispersion is high (“High Noise

treatment”).

Our experimental results run counter to the baseline theoretical predictions. Focusing

on the differences in average estimated strategic cutoffs, we find that they are significantly

lower in the Low Noise treatment compared to the High Noise treatment. Therefore, the

comparative statics are the opposite of what the theory predicts. More dispersed information

makes agents less, not more, aggressive.

Motivated by this finding, we modify the standard global game by assuming that players

have limited depths of reasoning. In particular, we focus on one specific non-equilibrium

theory that has received recent experimental and theoretical attention in the literature on

global games and informational frictions (Kneeland, 2016, Angeletos and Lian, 2017), namely

level-k thinking (Nagel, 1995; Stahl and Wilson, 1995).4 Models of level-k thinking assume

that agents have limited depths of reasoning and, at the same time, provide a specific struc-

ture to agents’ beliefs. We show that this departure from fully rational play can significantly

alter the prediction of the standard global games theory. Specifically, with level-k types, the

effect of more dispersed information on agents’ actions and regime stability can be reversed

relative to the game with fully rational players.

Intuitively, with level-k agents, different cognitive types have different strategic cutoffs –

the value of private signals above which agents are better off attacking. At the same time,

there is a strategic complementarity across level-k types, so that the aggressiveness of a lower

cognitive type influences the aggressiveness of higher cognitive types. Higher information

dispersion acts to attenuate this across-type strategic complementarity. Specifically, when

lower cognitive types are relatively more aggressive than the higher cognitive types, the de-

crease in coordination due to more dispersed private information stabilizes the regime, as

perceived by the higher cognitive types, which reduces those agents’ willingness to attack.

4An overview of models and evidence of non-equilibrium strategic thinking is provided in Crawford,
Costa-Gomes, and Iriberri (2013).
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Put differently, higher cognitive types become less aggressive with higher information dis-

persion. If this effect is strong enough, then increased information dispersion is stabilizing

in the level-k model rather than destabilizing.

To assess whether such a level-k model is quantitatively consistent with our experimental

findings, we follow Kneeland (2016) and structurally estimate a finite mixture model of play

with different level-k types, using data from both treatments. We additionally assume that

players are risk-averse, which ensures that the levels of the strategic cutoffs of behavioral

types are in line with our empirical data.5 We estimate a common distribution of level-k

types for both treatments, assuming fixed play by L0 types across the treatments. Therefore,

our results are not driven by variation in L0 types’ perceived play or different distributions

of the level-k types across the two treatments but are purely due to the effect of information

dispersion on actions. Our estimates show that a level-k model, augmented with risk-averse

players, can explain the observed differences in the strategic cutoffs estimated from the two

treatments.

Related literature

Initial coordination experiments focused on static games with complete information (Cooper,

DeJong, Forsythe, and Ross, 1990, 1992; Straub, 1995; Van Huyck, Battalio, and Beil, 1990).

Such games have multiple equilibria and strategic uncertainty comes to the forefront. As a

response to this indeterminacy, the theory of global games was developed by Carlsson and van

Damme (1993). The theory was later advanced by Morris and Shin (1998) to macroeconomic

applications. The global games framework provides an explicit model of strategic uncertainty.

It shows that coordination games with multiple equilibria under complete information may

have a unique equilibrium if certain parameters of the payoff function are private information

instead of common knowledge.

5Risk aversion on its own cannot reverse the comparative statics in a standard global game model, since
it only dampens the effect of information dispersion in that model.
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Heinemann, Nagel, and Ockenfels (2004) is the experimental paper closest to ours. It

tests the predictions of the theory of global games in a setting where the net payoff from a

successful attack is increasing in the underlying fundamental. In the unique global games

equilibrium agents use monotone cutoff strategies. Heinemann, Nagel, and Ockenfels (2004)

document that subjects tend to use such strategies, both under public and private infor-

mation. Widespread use of monotone, or near monotone, cutoff strategies has also been

documented in a broader class of global games experiments (Cornand and Heinemann, 2014;

Avoyan, 2017; Szkup and Trevino, 2017).6 Our experimental results are in line with these

findings.

Kneeland (2016) analyses global games where agents engage in level-k thinking.7 She

theoretically characterizes a coordination game where agents are of different level-k types.

Using experimental data from Heinemann, Nagel, and Ockenfels (2004), she shows that the

level-k model fits the data better than the fully rational model. Relative to this paper, we

provide a novel prediction on the effect of changes in information dispersion on different

cognitive types’ strategic cutoffs, and show experimental support for this prediction.

When the net payoff of a successful attack is increasing in the fundamentals as in our

experimental game, more precise private information should induce agents to become less

aggressive in equilibrium. The experimental literature, however, seems to document the

opposite. Heinemann, Nagel, and Ockenfels (2004) compare behavior under complete in-

formation to behavior under incomplete information. They find that subjects behave more

cautiously under incomplete information. Cabrales, Nagel, and Armenter (2007) test the

global games theory in a series of two-person games with a simplified information structure.

The design ensures that equilibrium is reached after only four rounds of elimination of (in-

terim) strictly dominated strategies. They find that subjects converge to the unique global

6Heinemann, Nagel, and Ockenfels (2009) develop a method to measure strategic uncertainty as an
alternative to varying the parameters of the game exogenously. They also find widespread use of cutoff
strategies. Heggedal, Helland, and Joslin (2018) find widespread use of cutoff strategies in a coordination
game with type uncertainty rather than uncertainty about fundamentals.

7Cornand and Heinemann (2014) analyze the relative weighting of public and private signals in a global
game by a k-level model and a cognitive hierarchy model.
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games equilibrium under incomplete information, but that subjects behave less cautiously

under complete information.

In a recent contribution, Szkup and Trevino (2017) also consider an experimental setting

where the precision of private signals varies across treatments. Like us, they find that

the comparative statics are reversed relative to what the theory predicts. To explain the

reversal in the theoretical comparative statics Szkup and Trevino (2017) argue that there

is a link between players’ perception of strategic uncertainty and fundamental uncertainty.

They propose a “sentiment theory”, where as fundamental uncertainty increases, players

also become more pessimistic about the actions of others, which is modeled via a “belief

residual” term. When the belief residual term is allowed to depend flexibly on the level of

signal precision across treatments, the modified model can account for departures from the

theoretical benchmark.

We differ from and complement Szkup and Trevino (2017) along several dimensions.

First, we differ in the experimental setting. Specifically, they investigate a two-player in-

vestment game similar to Carlsson and van Damme (1993), while we consider a larger co-

ordination game of regime change. Second, and more importantly, we explain the reversed

comparative statics with a theory based on bounded rationality and limited depth of rea-

soning. In that theory we identify a novel effect of information quality on agents’ actions,

which is absent in the fully rational model. We then evaluate the ability of this theory to

explain the data. Importantly, in our empirical investigation of the level-k theory we keep

both the distribution of level-k types and the perceived play of L0 types fixed as we change

information quality.

6



2 Theoretical predictions

Set-up

We consider a regime-change game that can serve as a simple representation of the strategic

interactions involved in currency crises (Morris and Shin, 1998), debt rollover (Rochet and

Vives, 2004, Goldstein and Pauzner, 2005), and political change (Edmond, 2013). We follow

the notation from Iachan and Nenov (2015), with a few modifications that are necessary

to enable a laboratory-based test of the theoretical predictions relating the information

structure to players’ actions and regime stability. Most importantly, we assume that there

is a discrete number N of players.

Agents take a binary action si ∈ {0, 1} simultaneously. We interpret si = 1 as player

i attacking the status quo. We let Z =
∑

i si denote the number of agents who choose

si = 1. A state variable Y (the fundamentals) determines agents’ payoffs, and also the

minimal number of agents required for a successful attack. We assume that Y is distributed

uniformly on [0,M ], for M > 0 and is not directly observed by agents, who hold this

distribution as their prior belief about the state.

Regime change occurs if at least a fraction g (Y ) ∈ (0, 1) of agents attack, where g (·) is

a decreasing function of the fundamentals.8 We define GN (Y ) ≡ dg (Y )Ne, so that regime

change occurs if, and only if, Z ≥ GN(Y ).

We normalize the payoff from action si = 0 to zero in the case of both regime change

and status quo survival and specify the payoffs in case of si = 1 as follows: the payoff to a

player who attacks is D(Y ) in case of regime change and U(Y ) in case of status quo survival.

We assume that D (Y ) > 0 and U (Y ) < 0 and that both are either constant or strictly

increasing in Y . As a consequence, actions are strategic complements.

Before choosing actions, agents observe noisy signals about the state Y . Specifically, we

assume that player i observes a signal xi = Y + ηi, where ηi’s are distributed uniformly on

8Therefore, higher Y means weaker fundamentals in this setting.

7



[−ε, ε], ε > 0, and ε � M , independently across players. Also, ηi is independent of the

realization of Y . We define Exi [·] as the expectation with respect to the information set of

an agent that receives signal xi.

Equilibrium

The definition of a Bayesian Nash Equilibrium for our game is standard (see Morris and Shin

(2003)). We restrict attention to equilibria in monotone strategies. A monotone strategy Y ∗

is such that s (xi) = 1 iff xi > Y ∗. In that case it is straightforward to apply standard results

from global games to show that there is a unique equilibrium. Furthermore, the restriction

is without loss of generality (Morris and Shin, 2003).

We call the critical value Y ∗ the strategic cutoff. Note that for a given value Y ∗ in the

finite-player case, the number of players who observe a signal above Y ∗ and thus choose

si = 1 is stochastic. Given a value of the fundamental Y , with signals uniformly distributed

on the interval [Y − ε, Y + ε], the probability that at least K players get a signal above Y ∗

is given by the tail distribution of a Binomial random variable

FN (K,Y, Y ∗) =
N∑

k≥K

 N

k

 p (Y, Y ∗, ε)k (1− p (Y, Y ∗, ε))N−k (1)

where

p (Y, Y ∗, ε) = min

{
max

{
0,
Y + ε− Y ∗

2ε

}
, 1

}
(2)

Therefore, the probability of regime change given a state Y is

P (Y, Y ∗) ≡ FN(GN(Y ), Y, Y ∗) (3)

Note that P (Y, Y ∗) = 1 for Y ≥ Y ∗ + ε and P (Y, Y ∗) = 0 for Y ≤ Y ∗ − ε. Also, P (Y, Y ∗)

is defined as a tail distribution evaluated at the endogenous GN(Y ). It is also convenient
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to define the probability of regime change for a player that attacks (si = 1). We define this

probability by P̃ (Y, Y ∗). Specifically, a player that attacks expects regime change to occur

if at least GN − 1 of the remaining N − 1 other players attack, which gives

P̃ (Y, Y ∗) ≡ FN−1(GN(Y )− 1, Y, Y ∗) (4)

Given this probability of regime change, Y ∗ is determined by an indifference condition for a

marginal agent – a player who observes a signal xi = Y ∗. Specifically, Y ∗ solves

EY ∗
[
D (Y ) P̃ (Y, Y ∗) + U(Y )

(
1− P̃ (Y, Y ∗)

)]
= 0. (5)

That is, for a marginal agent, the expected payoff from attacking equals the payoff from not

attacking.

As shown by Iachan and Nenov (2015), with a continuum of players, the effect of infor-

mation quality on the equilibrium of this game depends on a comparison of the sensitivities

of payoffs in the case of regime change and status quo survival. In our experiment, we focus

on the case where U (Y ) = U < 0 and D (Y ) is strictly increasing in Y . This nests many

global games applications, such as the literature on currency crises (Morris and Shin, 1998).

The prediction of the model that we aim to test experimentally is the comparative static

of Y ∗ with respect to ε. In this context, increased information dispersion is destabilizing

(Iachan and Nenov, 2015). That is, if N → ∞, U(Y ) = U < 0, ∀Y and D(Y ) is strictly

increasing, then ∂Y ∗

∂ε
< 0.9

9The same comparative statics also hold away from the limit N →∞.
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3 Experimental implementation

In order to implement the model in the lab, we closely follow Heinemann, Nagel, and Ock-

enfels (2004).10 The experiment is implemented as a series of 8 independent rounds. In each

round each subject makes 10 independent binary choices. We organize subjects in groups

of N = 10, with subjects indexed by i. The rules of the game are made public knowledge

through the reading of instructions aloud.11 Unique subjects are used in all sessions. The

language of the experiment is neutral.

At the beginning of each round, 10 different values of Y are drawn, where Y is distributed

uniformly on [0, 100]. For any realization of Y , individual signals xi are then drawn inde-

pendently according to a uniform distribution on [Y − ε, Y + ε]. Each individual signal is

revealed to subject i but not to the other subjects in the group. Within a treatment and a

given round, the list of fundamentals (Y ) are identical for the subjects in different groups,

while the list of signals (xi) varies over subjects. Given their signals, subjects are asked to

make a decision, A or B for each of the 10 decision situations in that round. In the context

of the model outlined above, A correspond to si = 0 and B correspond to si = 1. Subjects

get a feedback after each round. For each of the 10 games on the list, this feedback consists

of the number Y, the number of subjects that decided for A and B, and the subject’s own

payoff.

If a subject chooses A, she receives an endowment of 20 experimental currency units. If the

subject chooses B, she receives a payoff which depends on both the number of other subjects

who chose B and the state Y. Regime change takes place if G10(Y ) = [10 (80− Y ) /60]

individuals choose B. More specifically, our payoff structure is as follows. Let Z be the

number of agents in a group that attacks. π(Y, Z) is the net payoff from choosing B, given

the fundamental Y and the actions of the group members. π(Y, Z) is increasing in Y .

10We adopt the same payoff functions and other parameters as in their (T=20; Z=60) treatments. Our
experiment is based on the same zTree files and the same instructions as their experiment. The only
differences, aside from the subject pool, is that we consider groups of 10 rather than 15 subjects and that
we replace their complete information treatment with our High Noise treatment.

11Instructions for the high noise treatment are available at: http://www.leifhelland.net/working-papers/
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Treatments Low Noise High Noise
(ε = 10 ) (ε = 20 )

Theoretical cutoff Y ∗L= 41.4 Y ∗H= 37.8

Expected treatment difference Y ∗L − Y ∗H = 3.6

Table 1: Theoretical prediction.

π(Y, Z) =


Y − 20 : Z ≥ G10(Y )

−20 : Z < G10(Y )

(6)

With this set-up, observe that playing A is dominant if Y < 20 and playing B is dominant

if Y > 74.

We run a simple design in which the only treatment is the dispersion in the private sig-

nals, parametrized by the noise term ε. Specifically, we consider two treatments – a Low

noise treatment with εL, and a High noise treatment with εH > εL. Let Y ∗j denote the

theory-implied strategic cutoff for treatment j = {L,H}. The theoretical predictions are

summarized in Table 1.

We collected data on 8 groups in the High Noise treatment and 8 groups in the Low Noise

treatment, a total of 160 subjects. The sessions were run in the BI Norwegian Business

School Research Lab from May 2016 to June 2017. The experiment was programmed in

z-Tree (Fischbacher, 2007) and subjects were recruited from the general student populations

of BI Norwegian Business School and the University of Oslo using the software ORSEE

(Greiner, 2015).
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4 Results

Our first question is to what extent subjects follow the equilibrium requirement of using

undominated cutoff strategies in our experiment. For each player i and each round t, let xAit

be the highest signal at which subject i chooses A and xBit be the lowest signal at which she

chooses B. We say that a subject’s behavior is consistent with a cutoff strategy in round t,

if xBit ≥ xAit. Letting ε be the noise in each treatment (ε ∈ {10, 20}), observe that playing B

is dominated by A whenever xit < 20 − ε and A is dominated by B whenever xit > 74 + ε.

We say that a subject’s behavior is consistent with an undominated cutoff strategy if it is

consistent with a cutoff strategy, and xBit ≥ 20− ε and xAit ≤ 74 + ε.

Overall, the observed behavior of the subjects is largely consistent with playing undom-

inated cutoff strategies. On average, 89 % of the subjects play in a way consistent with

undominated cutoff strategies in the Low Noise treatment. In the High Noise treatment,

the corresponding number is 92%. There is also some evidence of an increasing reliance on

undominated cutoff strategies over time. Figure 1 shows the evolution in the use of cutoff

strategies over time for each of our treatments. The percentage of subjects whose behavior

is consistent with undominated cutoff strategies is increasing as play progresses.
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Figure 1: Percentage of subjects, whose behavior is consistent with undominated cutoff
strategies.

Result 1 (Cutoff strategies): Subjects play consistently with undominated cutoff strate-
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gies.

To estimate strategic cutoffs we take the average, individual by individual, of the highest

signal for which a subject chooses A and the lowest signal for which the subject chooses

B. We then take the mean of these cutoffs within each group and refer to it as the Mean

Estimated Threshold (MET).

In what follows we focus on first round behavior. The level-k theory explored in Section

5 below is meant to address initial play in unfamiliar environments, before learning kicks in

(Crawford (1995)). Experimental evaluations using models of limited depths of reasoning,

therefore, typically focus on first round behavior (Crawford, 1995, Camerer, 2011, chapters

1 and 6). Result 4 suggests that there is some learning going on in our data. Thus, focusing

on first round behavior appears justified.12

Table 2 reports the mean estimated cutoff using first-round data and average behavior

per group as observations. Data in the table are ranked in ascending order for each treatment

based on the METs. As is evident, in each ordered pair of groups, the MET is higher in the

High Noise treatment.

Group #
Low noise High noise

1 22.8 31.8
2 30.2 35.8
3 35.9 39.4
4 38.0 41.3
5 39.9 44.6
6 40.8 48.7
7 44.4 49.5
8 44.8 51.5

Mean cutoff (Ȳj) 37.1 42.8
Standard deviation 7.4 6.9

Theoretical predictions 41.4 37.8

Table 2: Estimated strategic cutoff; first round data only, ranked groups.

12Note, however, that results are qualitatively and quantitatively similar when using all data and preform-
ing a logit estimation of individuals likelihood of attacking conditional on their signals, treatment and an
interaction-term.
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Having obtained the METs across groups and treatments, we proceed to testing the

model predictions.

A crucial comparative static of the model is that the MET in the High Noise treatment

should be lower than in the Low Noise treatment. From Table 2 the observed difference, av-

eraging over groups in each treatment, is the opposite: the MET in the High Noise treatment

is 5.7 units higher than in the Low Noise treatment.

To formally test whether the difference across treatments is significant, we follow a con-

servative approach and run a Mann-Whitney U-test where we compare the rank-sums of

METs using group averages as units of observation. The null hypothesis is that the MET

is not higher in the Low Noise treatment than in the High Noise treatment. The results are

shown in Table 3. We reject the null hypothesis with a p-value of 8%. Hence, the strategic

cutoffs are lower in the Low Noise treatment compared to the High Noise treatment.

Treatment Obs Expected Rank sum Rank sum
Low Noise 8 68 55
High Noise 8 68 81

p-value 0.08∗

Table 3: One-sided Mann-Whitney U-test of comparative statics.

Result 2 (Comparative statics): The estimated strategic cutoffs are lower in the Low

Noise treatment compared to the High Noise treatment.

According to the model, the treatment difference between the estimated cutoffs should

be approximately 3.6. As noted, the observed difference is -5.7. Table 4 reports the results

from a two sided Mann-Whitney U-test where the null hypothesis is that the difference in

METs is 3.6. Again, the test uses only first round data and has group averages as units of

observation. We reject the null hypothesis that Ȳ L − ȲH = 3.6 with a p-value of 3%.13

13Note that Ȳ L − ȲH = 3.6⇒ Y ∗L − ȲL = Y ∗H − ȲH .
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Treatment Obs Expected Rank sum Rank sum

Y ∗L − Y L 8 68 48
Y ∗H − Y H 8 68 88

p-value 0.03∗∗

Table 4: Two-sided Mann-Whitney U-test of treatment difference.

Result 3 (Treatment difference): The treatment difference is significantly different from

what is implied by theory.

The evolution of the average estimated cutoffs over time is shown in Figure 2. There are

some indications of learning, as cutoffs converge over time.

Result 4 (Evolution of play): Some convergence of behavior over time.

Figure 2: Average estimated strategic cutoffs for each treatment, by round.
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5 Deviations from equilibrium theory

The results in the previous section suggest that the comparative statics of the strategic cutoff

with respect to information quality go in the opposite direction relative to the theory. In

this section, we propose one explanation for this finding.

5.1 Level-k thinking

Level-k thinking is a frequently used solution concept in Behavioral Game Theory.14 It

features limited depths of reasoning, adds a specific structure to agents’ beliefs, and is

particularly meant to capture players’ initial behavior in strategic games, before learning

induces higher levels of sophistication. In this framework, each player’s type Lk is drawn

from a discrete distribution over k ∈ {0, 1, . . . ,∞}, where Lk denotes a type that engages

in k rounds of reasoning. In particular, the behavior of L0 types is specified as a model

primitive, and L0 types have zero mass. An L1 type best replies as if all other agents are

L0 types, an L2 type assumes that all other agents are L1 types, and so on.

The main appeal of a level-k model in our setting is that it can change the comparative

statics from the standard global games theory on how information dispersion affects players’

actions and regime stability. In the standard global games model with fully rational types

changes in information dispersion affect players’ actions only through a “payoff sensitivity”

effect (Iachan and Nenov (2015)). This effect is present when the net payoffs from attacking

over not attacking, given regime-change or no regime-change, depend on the fundamental.

In our specific environment, this effect implies that a higher value of information disper-

sion makes players more aggressive, since it increases their fundamental uncertainty and,

consequently, their expected payoff conditional on regime change.

In the level-k model, unlike the fully rational model, a level-k player that best responds to

level-(k − 1) players may end up playing according to a different cutoff strategy compared to

14See, for instance, Nagel (1995); Stahl and Wilson (1995); Kubler and Weizsacker (2004); Crawford,
Costa-Gomes, and Iriberri (2013).
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the level-(k − 1) types. This opens up the possibility for a novel effect of information quality

on players’ actions. To understand this effect, note that there is a strategic complementarity

across types of different levels. Specifically, the aggressiveness of the level-(k − 1) types (i.e.

the location of their cutoff) influences the level-k type’s cutoff (and, through that cutoff,

affects higher levels). Higher information dispersion attenuates this across-type strategic

complementarity, since it makes players less coordinated when attacking and also reduces

their ability to forecast the actions of other players. Therefore, if level-(k − 1) types are

more aggressive than level-k types, higher information dispersion will make level-k types

react less to the aggressiveness of level-(k − 1) types. Put differently, level-k types become

less aggressive with higher information dispersion.

In the Appendix we formalize this “strategic attenuation” effect of higher information

dispersion in the level-k model and also show that under some conditions it goes against

and even dominates the “payoff sensitivity” effect. Specifically, the comparative statics with

respect to information dispersion can be reversed, provided that there are sufficiently many

agents that engage in few rounds of reasoning, and L1 types are relatively aggressive. In

terms of model primitives, since L1 types tend to be more aggressive when they expect L0

types to play more aggressively, the comparative statics are reversed in a level-k model,

provided that there are sufficiently many types that engage in few rounds of reasoning, and

L0 types are expected to play sufficiently aggressively.

5.2 Empirical evaluation

In this section, we evaluate empirically whether the level-k model can account for the devi-

ations from equilibrium theory that we have documented in Section 4.
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5.2.1 Methodology

To separate the subjects into different level-k types, we follow Kneeland (2016) and estimate

a finite mixture model on our experimental data.15 We allow subjects to be L1, L2, and

equilibrium types, which we denote by Lk, k ∈ {1, 2,∞}.16 We denote the share of Lk types

by pk, with p∞ denoting the share of equilibrium types.

As highlighted in the previous section, a level-k model can lead to a reversal of the

comparative statics, provided that two conditions are satisfied. First, there are sufficiently

many types that engage in few rounds of reasoning and, second, L0 types are expected to

play sufficiently aggressively. Therefore, in our empirical implementation, we assume that

L0 types are expected to play aggressively. Specifically, we assume that L1 types believe

that L0 types attack with probability 1.17

While most of the literature in which level-k models are used to explain data from

experimental games assumes that L0 types randomize uniformly over actions (Crawford,

Costa-Gomes, and Iriberri, 2013, and references therein), the literature on experimental

coordination games has shown that initial play tends to be biased towards payoff dominant

actions (Costa-Gomes, Crawford, and Iriberri, 2009).18 Moreover, assuming that L0 types

randomize uniformly in global games of regime change (so that the share of agents attacking

is uniformly distributed) leads to the fully rational equilibrium, since L1 types end up holding

(and reacting to) Laplacian beliefs about the remaining players’ actions (Morris and Shin,

2003). For these reasons Kneeland (2016) assumes that L0 types play more aggressively than

uniform randomization in her empirical investigation of a level-k model in an experimental

global game. Our assumption of aggressive L0 types is, therefore, in line with this previous

15We follow the estimation procedure for finite mixture models in Mofatt (2016), chapter 8.
16As in Kneeland (2016), equilibrium types engage in infinite rounds of reasoning, so they play according

to the equilibrium strategies from the global games model.
17In the Online Appendix we explore the robustness of our results with respect to this assumption when

L0 types are expected to play less aggressively. Our empirical results also hold qualitatively for lower levels
of aggressiveness by L0 types.

18A deviation from this assumption is also found in the literature on auctions, where L0 types are assumed
to bid their value conditional on their own signal (Crawford and Iriberri, 2007).
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work on level-k models in experimental global games. We also note that we do not treat the

aggressiveness of L0 types as a free parameter that can vary across treatments.

Notice, however, that due to the across-type strategic complementarity in the level-k

model, the assumption of aggressive L0 types reduces the strategic cutoffs for the behavioral

types. Consequently, given the observed play in our experimental data, our estimation

procedure would end up classifying the majority of players as equilibrium types. Therefore,

to ensure that the levels of the strategic cutoffs of the Lk types are in line with our empirical

data, we assume that players are risk-averse. Specifically we assume that players have

constant relative risk aversion (CRRA) preferences and set the players’ coefficient of relative

risk aversion to 2/3, in line with estimates from the existing experimental literature (Harrison

and Rutström, 2008). Introducing risk-aversion raises the strategic cutoffs for all types,

while preserving the predictions of the level-k model with respect to changes in information

dispersion.19

We further assume that each subject follows the action of a particular Lk type with some

error. Specifically, in each decision round a subject makes a decision consistent with her

type with probability 1 − ν and makes an error with probability ν. If the player makes an

error, the choice depends on an error density dk
(
aiq, λ

)
specified below.

Let Q = {1, 2, ..., 10} denote the set of all decisions, q ∈ Q denote a specific decision

instance, and aiq denote the choice of subject i in instance q. For each subject×type, we

define the set Qik ⊂ Q, which consists of all instances q, where subject i made a choice

aiq consistent with type Lk. Weighting over the different types (k) and summing over all

subjects (i), we get that the log-likelihood of observing a particular set of choices is

L =
N∑
i=1

log

[
3∑

k=1

pk
(
Πq∈Qik

(
1− ν + νdk

(
aiq, λ

))) (
Πq /∈Qikνd

k
(
aiq, λ

))]
. (7)

19Risk aversion on its own cannot reverse the comparative statics in a standard global game model, since
it only dampens the “payoff sensitivity” effect. In the Appendix we present the estimation results with
risk-neutral types. The estimated share of equilibrium types in that case is 71%.

19



Parameter Estimate
Fraction of level-1 agents ( p1 ) 0.22

[0.09]
Fraction of level-2 agents ( p2 ) 0.56

[0.05]
Fraction of equilibrium types ( 1− p1 − p2 ) 0.22

[0.09]
Trembling rate (ν ) 0.94

[0.25]
Precision of error density (λ) 0.52

[0.11]
n 1600

Table 5: Results from estimating equation (7) on data from round 1. Bootstrapped standard
errors in brackets.

The parameter λ is a precision parameter in the error density

dk
(
aiq, λ

)
=

exp
{
λSkq

(
aiq
)}

exp
{
λSkq (attack)

}
+ exp

{
λSkq (not attack)

} , (8)

where Skq
(
aiq
)

denotes the expected payoff of an agent of type Lk at decision instance q, who

makes a choice aiq.

The unit of analysis is now individual decisions, which is in line with the existing literature

on coordination experiments (Costa-Gomes, Crawford, and Iriberri, 2009; Crawford, Gneezy,

and Rottenstreich, 2008). We fit 4 independent parameters, namely p1, p2 (the fractions of

types L1 and L2), λ, and ν, on data from the first round for both treatments. In the

numerical maximization of the likelihood function, we constrain all parameters to take on

non-negative values.

5.2.2 Results

The results are shown in Table 5. The fraction of level-k types is estimated to be 78 %. This

is roughly in line with the estimate from Kneeland (2016). Most agents are classified as L2,

albeit with a relatively large probability of trembling.

We proceed by investigating whether the estimated level-k model can rationalize our
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experimental findings. A simple first pass is to compute the weighted average of the theory-

implied strategic cutoffs, using the estimated distribution of Lk types from Table 5 as weights

and investigating whether the resulting average cutoff in the Low Noise treatment is lower

than the average cutoff in the High Noise treatment.20 This yields an average strategic cutoff

of 34.84 in the Low Noise treatment, and 40.17 in the High Noise treatment. Put differently,

agents are, on average, less aggressive in the High Noise treatment compared to the Low

Noise treatment, which is in line with our experimental findings.

A caveat with the preceding exercise is that it does not take into account that our

estimated model allows for trembles. We proceed with the following simulation exercise: We

simulate 1000 sessions, whereby in each session 640 games are played. For each session and

game, agents draw a type according to the estimated type distribution from Table 5. We

then assume that agents play according to their drawn type, with a probability of trembling

equal to our estimated ν. Conditional on trembling, agents choose actions according to the

spike-logit density ((8)), governed by the precision parameter λ. For each game, we then

compare the mean cutoffs across a high and a low noise treatment, denoted by θ̂l and θ̂h,

respectively.

Figure 3 plots the empirical CDF of the differences between average strategic cutoffs

across the two treatments (θ̂l − θ̂h) using the simulated data. More than 95% of the sim-

ulated sessions have negative differences in estimated strategic cutoffs, indicating that the

comparative statics are flipped relative to equilibrium theory. We take this as evidence that

the level-k model, combined with risk-averse players, can explain our experimental findings.

6 Concluding remarks

In this paper we experimentally test how changes in private information precision affect

regime stability in a standard global games model. We show that contrary to the theoretical

20The theory-implied cutoffs in the Low Noise treatment are 20.56, 33.77 and 52.11 for L1, L2 and L∞
respectively. For the High Noise treatment, the corresponding cutoffs are 22.44, 42.68 and 51.69.
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Figure 3: Empirical CDF of estimated cutoff differences from 1000 simulated sessions. Dot-
ted lines indicate 95% confidence intervals as computed by Greenwoods formula.

predictions agents become less aggressive when information dispersion increases. We show

that augmenting the standard global games set-up with boundedly rational agents that

engage in level-k thinking can help explain our experimental finding. In the level-k model,

information quality affects agents’ actions through a novel channel, which does not operate

in the fully rational model. Moreover, that novel channel can reverse the comparative statics

with respect to changes in information precision.

The fact that the fully rational and level-k models can differ so dramatically in their

predictions about the effect of information quality on behavior points to the importance

of studying more carefully global coordination games with boundedly rational agents, both

theoretically and experimentally. We view this as a promising venue for future research.
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Appendix

The effect of information quality with level-k thinking.

In this appendix, we provide an example of why level-k thinking is capable of generating the

comparative statics that are in line with what we document in the experiment. Consider

the set-up from Section 2, but assume that N → ∞ for simplicity (i.e. we analyze a

large game rather than a game with a finite number of players). Regime change occurs

if a fraction g (Y ) of players attacks, where g is continuously differentiable and (weakly)

decreasing in Y . Also, we consider U (Y ) = U < 0 and define d (Y ) ≡ D (Y )− U , as in our

experimental game. Given the assumed properties of D (Y ), d (Y ) is also strictly increasing

in Y . Assume that agents have limited depth of reasoning. Following Kneeland (2016),

we assume that L1 agents believe that the aggregate behavior of L0 types is given by the

cumulative distribution function Q (z|Y ), where z denotes the fraction of agents that attack.

Here, Q (z|Y ) is continuously differentiable and weakly decreasing in Y , so that L1 types

believe that a higher value of Y leads to a larger share of L0 types attacking.

L1 types

Consider an L1 type that observes a signal xi and denote her net payoff from attacking vs.

not attacking by

πL1i = Ei [D (Y ) |z > g (Y )] Pr
i
{z > g (Y )}+ U Pr

i
{z < g(Y )}

= Ei [d (Y ) |z > g (Y )] Pr
i
{z > g (Y )}+ U.

Consider a typical L1 type that observes a signal xi ∈ [ε,M − ε], i.e. a signal which is not too

close to the extremes of the support. Her posterior belief about Y is distributed uniformly
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on [xi − ε, xi + ε] and we can write πL1i as,

πL1i =

∫ xi+ε

xi−ε
d (Y ) [1−Q (g (Y ) |Y )]

1

2ε
dY + U.

Define d̃ (Y ) ≡ d (Y ) [1−Q (g (Y ) |Y )]. Therefore, d̃ combines the net payoff from attacking

over not attacking, given a successful attack, d (Y ), with the probability of regime change

occurring. Note that given the assumptions on d and Q, d̃ (Y ) is strictly increasing in Y .

Notice that
dπL1
i

dxi
> 0, so L1 types that observe a higher signal have a higher net payoff from

attacking both because they expect a higher value of Y (i.e. weaker fundamental) but also

because they believe that L0 agents will play more aggressively. Next, denote the strategic

cutoff of L1 types by x∗L1. That cutoff satisfies:

π̂L1 :=

∫ x∗L1+ε

x∗L1−ε
d̃ (Y )

1

2ε
dY + U = 0. (9)

Agents with signals to the right (resp. left) of x∗L1 always (never) attack. Lemma 1 charac-

terizes how the behavior of L1 types varies with signal precision.

Lemma 1. In the game described above L1 agents attack according to monotone strategy

with a cutoff x∗L1, defined in (9). Furthermore,

∂x∗L1
∂ε
∝ −

∫ 1

−1
d̃′ (x∗L1 + εt) t dt.

Proof. We can use a change of variables t =
Y−x∗L1

ε
to write π̂L1 as

π̂L1 =
1

2

∫ 1

−1
d̃ (x∗L1 + εt) dt+ U.

Therefore,

∂π̂L1

∂ε
=

1

2

∫ 1

−1
d̃′ (x∗L1 + εt) tdt
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Since, dπ̂L1

dx∗L1
> 0, by the implicit function theorem we have that,

∂x∗L1
∂ε
∝ −

∫ 1

−1
d̃′ (x∗L1 + εt) tdt.

With the payoff structure as in our experiment, the behavior of L1 types will not change

with changes in ε, since their perceived probability of regime change is noise invariant.

Additionally, when noise is small, to a first-order approximation the effect of changes in

noise on the behavior of L1 types is zero.

Example 1. Constant resilience and L0 types play independently of Y : If d (Y ) =

Y , g (Y ) = g and Q (z|Y ) = Q (z),−
∫ 1

−1 d̃
′ (x∗L1 + εt) tdt = 0.

Example 2. Small noise: Noise independence holds in the limit, as limε→0

∫ 1

−1 d̃
′ (x∗L1 + εt) t dt =

d̃′ (limε→0 x
∗
L1)
∫ 1

−1 t dt = 0.

L2 Types

Next, consider the L2 types. Define Y f
L1 as

g
(
Y f
L1

)
=
Y f
L1 + ε− x∗L1

2ε
=

1

2
+
Y f
L1 − x∗L1

2ε
. (10)

Therefore, L2 types believe that regime change takes place if Y > Y f
L1.

21

As with the L1 types, consider a L2 type that observes a signal xi and denote her net

payoff from attacking vs. not attacking by

πL2i = Pr
i

{
Y > Y f

L1

}
Ei

[
D (Y ) |Y > Y f

L1

]
+ U Pr

i

{
Y < Y f

L1

}
= Pr

i

{
Y > Y f

L1

}
Ei

[
d (Y ) |Y > Y f

L1

]
+ U.

21We suppose further that Y f
L1 ∈ [2ε,M − 2ε], to abstract away from complications arising because of the

bounded support of the uniformly distributed private signals.

29



L2 types that observe a signal xi ∈
[
Y f
L1 − ε, Y

f
L1 + ε

]
are not sure of either regime survival

or failure, so this is the signal interval of interest for the strategic cutoff characterization.

They have a posterior belief about Y , which is distributed uniformly on [xi − ε, xi + ε], and

we can write πL2i as

πL2i =

∫ xi+ε

Y fL1

d (Y )
1

2ε
dY + U.

As with L1 types,
dπL2
i

dxi
> 0, so L2 types that observe a higher signal also have a higher net

payoff from attacking. We denote the strategic cutoff of L2 types by x∗L2, which satisfies

π̂L2 :=

∫ x∗L2+ε

Y fL1

d (Y )
1

2ε
dY + U = 0. (11)

Lk Types

One can proceed recursively and define the strategic cutoff for an Lk type, k ≥ 2, x∗Lk as the

solution to ∫ x∗Lk+ε

Y f
L(k−1)

d (Y )
1

2ε
dY + U = 0, (12)

where Y f
L(k−1) is the failure cutoff given optimal behavior by L (k − 1) types, defined as

g
(
Y f
L(k−1)

)
=

1

2
+
Y f
L(k−1) − x∗L(k−1)

2ε
. (13)

Strategic attenuation effect of higher information dispersion

We next show that changes in information quality ε may change the optimal behavior of Lk

types differently from the effect of information quality on equilibrium play. Specifically, we

show two results to that effect. The first is for an arbitrary distribution of level-k types but

a more specific payoff function d. The second is for a model with just L1 and L2 types but

with a more general payoff function d.

First, we assume that d (Y ) = d. We make this assumption to completely switch off the
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“payoff sensitivity”effect from changes in information dispersion ε, emphasized in Iachan and

Nenov (2015), when d is a function of Y . Specifically, this effect implies that a higher value of

ε makes agents more aggressive, since it increases fundamental uncertainty and, consequently,

the expected payoff conditional on regime change. This ”payoff sensitivity” effect is the

only effect that operates in a global games model when agents engage in equilibrium play.

Switching off this effect implies no effect of information precision on equilibrium play. For

simplicity, we also assume that we have a linear resilience function g (Y ) = α + βY .

Proposition 1. Consider the game described above and let d (Y ) = d, and g (Y ) = α+βY ,

β < 0. Let x∗Lk be the strategic cutoff of a Lk type, for k ≥ 2, defined as in ( (12)) with the

cutoff for L1 types as defined in (9).

• If x∗Lk > x∗Lk−1, then
∂x∗Lk
∂ε

< 0, so, higher noise makes Lk types more aggressive.

• If x∗Lk < x∗Lk−1, then
∂x∗Lk
∂ε

> 0, so, higher noise makes Lk types less aggressive.

• If x∗Lk = x∗Lk−1, then
∂x∗Lk
∂ε

= 0, so, higher noise has no effect on the behavior of Lk

types.

Proof. Define h(x) implicitly by

∫ h(x)+ε

Y f (x)

d
1

2ε
dY + U = 0, (14)

where Y f (x) is the failure cutoff if agents play according to a cutoff x, i.e.

g
(
Y f (x)

)
=

1

2
+
Y f (x)− x

2ε
. (15)

Therefore, h (x) is the cutoff for an agent that believes everybody else plays according to

cutoff x. Notice then that x∗Lk = h
(
x∗L(k−1)

)
, for k ≥ 2. Also, if x∗∞ denotes equilibrium

play, x∗∞ solves x∗∞ = h (x∗∞). Therefore, x∗Lk → x∗∞. Next, note that

h′ (x) =
1

1− 2εg′ (Y f (x))
=

1

1− 2εβ
< 1.
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Therefore, {x∗Lk}
∞
k=1 defines a monotone sequence, so that if x∗L1 < x∗∞, then x∗L(k−1) < x∗Lk <

x∗∞ and vice versa for x∗L1 > x∗∞. Noting that ∂
∂ε

(h′ (x)) < 0, it follows that an increase in ε

leads to flattening of h (x). Furthermore, since ∂x∗∞
∂ε

= ∂h(x∗∞)
∂ε

= 0, it follows that for x < x∗∞,

h (x) must strictly increase, while for x > x∗∞, h (x) must strictly decrease. Noting that

x∗Lk > x∗Lk−1, ∀k ≥ 2 implies x∗Lk < x∗∞ and vice versa for x∗Lk < x∗Lk−1, we arrive at the first

and second observation in the proposition. Finally, since x = h (x) has a unique solution (by

uniqueness of the global games equilibrium), it follows that x∗Lk = x∗L(k−1) implies x∗Lk = x∗∞,

∀k ≥ 1, which leads to the third observation.

Intuitively, an increase in the dispersion of private noise attenuates the strategic comple-

mentarity across level-k types, since it makes agents less coordinated when attacking and

also reduces their ability to forecast the actions of other agents. At the equilibrium cut-

off that effect is not relevant, however, if agents best respond to agents that do not play

according to the equilibrium cutoff, as in the level-k model, that effect becomes important.

Next, we show that this “strategic attenuation” effect operates also when the payoff

function d depends on Y , so that the “payoff sensitivity” effect is not switched off. Suppose,

for illustration, that there are only two level-k types: L1 and L2. We next show that the

behavior of L2 types with respect to changes in the signal precision depends on a comparison

of the strategic cutoffs of L1 and L2 players similar to the comparison from Proposition (2).

Proposition 2. Consider the game described above and let g (Y ) = g and Q (z|Y ) = Q (z).

Let x∗L1 and x∗L2 be the strategic cutoff of L1 and L2 types as defined in (9) and (11) above.

• If x∗L1 > x∗L2, then
∂x∗L2

∂ε
< 0, so, higher noise makes L2 types more aggressive.

• There exists a ∆ > 0, such that for x∗L1 < x∗L2 −∆,
∂x∗L2

∂ε
> 0, so, higher noise makes

L2 types less aggressive.

Proof. From Lemma 1, x∗L1 does not depend on ε given g (Y ) = g and Q (z|Y ) = Q (z). We
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use a change of variables t =
Y−x∗L2

2ε
to write π̂L2 as

π̂L2 =

∫ 1/2

Y
f
L1
−x∗

L2
2ε

d (x∗L2 + 2εt) dt+ U.

Therefore,

∂π̂L2

∂ε
= −

(
−Y

f
L1 − x∗L2

2ε2
+

1

2ε

∂Y f
L1

∂ε

)
d
(
Y f
L1

)
+

∫ 1/2

Y
f
L1
−x∗

L2
2ε

d′ (x∗L1 + 2εt) 2tdt.

Notice that

∂Y f
L1

∂ε
=

1

ε

Y f
L1 − x∗L1

1− 2εg′
(
Y f
L1

) .
After undoing the change of variables, we have,

∂π̂L2

∂ε
= −

−Y f
L1 − x∗L2

2ε2
+

1

2ε2
Y f
L1 − x∗L1

1− 2εg′
(
Y f
L1

)
 d

(
Y f
L1

)
+

1

ε

∫ x∗L2+ε

Y fL1

d′ (Y ) (Y − x∗L2)
1

2ε
dY.

Therefore, by the Implicit Function theorem,

∂x∗L2
∂ε
∝

x∗L2 − Y f
L1 +

Y f
L1 − x∗L1

1− 2εg′
(
Y f
L1

)
 d

(
Y f
L1

)
−
∫ x∗L2+ε

Y fL1

d′ (Y ) (Y − x∗L2) dY.

With g (Y ) = g, g′ = 0, so

∂x∗L2
∂ε
∝ (x∗L2 − x∗L1) d

(
Y f
L1

)
−
∫ x∗L2+ε

Y fL1

d′ (Y ) (Y − x∗L2) dY.

Furthermore, with d (Y ) = Y, d′ (Y ) = 1, so,

∂x∗L2
∂ε
∝ (x∗L2 − x∗L1)Y

f
L1 −

(
1

2
Y 2 − x∗L2Y

∣∣∣∣x∗L2+ε

Y fL1

)

∝ (x∗L2 − x∗L1)Y
f
L1 +

1

2

(
Y f
L1 − x

∗
L2

)2
− 1

2
ε2.
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Figure 4: Illustrative example of Proposition 5. In the left panel, L0 agents attack with
probability 0.45. In the right panel, L0 agents attack with probability 1. We assume g = 6.5
and that payoffs are in line with our experimental implementation, i.e. D (Y ) = Y − 20 and
U = −20.

Note that

(x∗L2 − x∗L1)Y
f
L1 +

1

2

(
Y f
L1 − x

∗
L2

)2
− 1

2
ε2 ≥ (x∗L2 − x∗L1)Y

f
L1 −

1

2
ε2 ≥ (x∗L2 − x∗L1) 2ε− 1

2
ε2,

since Y f
L1 ≥ 2ε. Then the sign of

∂x∗L2

∂ε
depends on a comparison of x∗L2 and x∗L1. Suppose

that x∗L2 ≤ x∗L1. Then
∂x∗L2

∂ε
< 0. Suppose that x∗L2 − x∗L1 >

ε
4
. Then,

∂x∗L2

∂ε
> 0. Setting

∆ = ε
4
, we arrive at our result.

Figure 4 shows two examples based on the payoff parametrization from our experiment

that confirm that both cases of Proposition 2 are relevant. In the left panel, L1-types believe

that L0-types play relatively cautiously, so they also play relatively cautiously compared to

the equilibrium (fully rational) types. In the right panel, L1-types believe that L0-types play

relatively aggressively, so they tend to play more aggressively relative to the equilibrium

types.

The intuition for why the effect of information precision is ambiguous follows from a

comparison of the “payoff sensitivity” and “strategic attenuation” effects. As in the case of

fully rational agents, there is a “payoff sensitivity” effect when d depends on Y . When x∗L1 >

x∗L2, the “strategic attenuation” effect reinforces the “payoff sensitivity” effect. However,
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when x∗L1 < x∗L2, the “strategic attenuation” and “payoff sensitivity” effects oppose each

other. When x∗L1 is sufficiently different from x∗L2, the “strategic attenuation” effect ends

up dominating the “payoff sensitivity” effect and the comparative statics reverse – L2 types

become less aggressive.

As agents engage in more rounds of reasoning (and approach the fully rational types) the

difference in the strategic cutoffs between level-k and level-(k−1) types tends to decrease (as

they converge to the strategic cutoff of the fully rational types). Consequently, the “strategic

attenuation” effect tends to weaken. Therefore, the comparative statics with respect to

information dispersion can be reversed, provided that there are sufficiently many agents

that engage in few rounds of reasoning and L1 types are relatively aggressive. In terms of

model primitives, since L1 types tend to be more aggressive when they expect L0 types to

play more aggressively, the comparative statics are reversed in a level-k model, provided that

there are sufficiently many types that engage in few rounds of reasoning and L0 types are

expected to play sufficiently aggressively.
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Parameter Estimate
Fraction of level-1 agents ( p1 ) 0.07

[0.04]
Fraction of level-2 agents ( p2 ) 0.22

[0.08]
Fraction of equilibrium types ( 1− p1 − p2 ) 0.71

[0.07]
Trembling rate (ν ) 0.42

[0.09]
Precision of error density (λ) 0.02

[0.01]
n 1600

Table 6: Results from estimating equation (7) on data from round 1. Bootstrapped standard
errors in brackets.

Additional empirical results

Level-k model estimation with risk-neutral agents

The results from estimating the level-k model with risk-neutral agents are shown in Table 6.

Using the estimated fractions and the strategic cutoffs from the different types yields a

average cutoff of 34.95 in the High noise treatment and a average cutoff of 37.14 in the Low

Noise treatment.

Level-k model estimation with less aggressive L0

In our baseline specification, we assume that L0 types attack with probability 1. As a

robustness exercise, we have redone the estimation assuming that L0 types are expected

attack with probability 0.8. The results are shown in Table 7.

Using the estimated fractions and the strategic cutoffs from the different types yields a

average cutoff of 44.2 in the High noise treatment and a average cutoff of 41.36 in the Low

Noise treatment.
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Parameter Estimate
Fraction of level-1 agents ( p1 ) 0.82

[0.10]
Fraction of level-2 agents ( p2 ) 0.00

[0.05]
Fraction of equilibrium types ( 1− p1 − p2 ) 0.18

[0.09]
Trembling rate (ν) 0.60

[0.16]
Precision of error density (λ) 0.27

[0.09]
n 1600

Table 7: Results from estimating equation (7) on data from round 1. Bootstrapped standard
errors in brackets.
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