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Abstract

We experimentally test the effects of information quality on regime stability in
a global game of regime change. The game features a payoff structure such that
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stability in the Bayesian Nash Equilibrium. We show that subjects in the lab do not
play as predicted by the theory. Rather, more dispersed information makes subjects
more cautious, increasing regime stability. We show that this finding is consistent with
a modified global game model in which agents engage in level-k thinking. In the level-k
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1 Introduction

Global games of regime change are commonly used to analyze important economic phenom-
ena involving elements of coordination, such as currency crises, bank runs, and political
change.! A central question in this literature — both from a theoretical and an applied per-
spective — is how information quality — the precision of agents’ private information — affects
the probability of a successful coordinated attack.

In this paper, we experimentally test how a change in private information precision
affects regime stability in a standard global game of regime change. Specifically, we consider
a global game in which agents receive private information with certain dispersion. The
payoff structure is such that higher private information dispersion makes agents more likely
to attack in equilibrium and, hence, regime stability decreases.? Our set-up, therefore, differs
from the majority of other experimental evaluations of global games of regime-change, which
typically compare the effects of private versus public information.

We let subjects play a series of games where they take binary decisions — attack or
not attack. Their payoff from attacking depends both on an underlying state and on the
actions of others. If a sufficient number of agents choose to attack (given the value of
the underlying state), then all attacking agents obtain a discretely higher payoff relative
to not attacking. In addition, the higher the value of the state, the higher the discrete
payoff from a successful attack.® Finally, agents obtain private signals about the underlying
state with some dispersion. We set up the payoffs of agents to correspond to the literature
on speculative currency attacks, where theory predicts that more dispersed information is

destabilizing (Heinemann and Illing, 2002, Tachan and Nenov, 2015). In this setting, we

1See Morris and Shin, 1998 for currency crises, Rochet and Vives (2004) and Goldstein and Pauzner
(2005) for bank runs, and Edmond (2013) for political change.

2In general, the effect of a change in private information dispersion on regime stability is ambiguous
and depends on the payoff structure that is generated by the underlying economic environment (Iachan and
Nenov, 2015). To provide a clear theoretical prediction to test in a laboratory setting, we opt for a specific
payoff structure that leads to the aforementioned comparative static.

3Therefore, a higher state in our abstract game can be interpreted as a lower value of a common economic
fundamental.



compare subjects’ behavior in two treatments, one where private information dispersion is
low (“Low Noise treatment”) and one where the information dispersion is high (“High Noise
treatment”).

Our experimental results run counter to the baseline theoretical predictions. Focusing
on the differences in average estimated strategic cutoffs, we find that they are significantly
lower in the Low Noise treatment compared to the High Noise treatment. Therefore, the
comparative statics are the opposite of what the theory predicts. More dispersed information
makes agents less, not more, aggressive.

Motivated by this finding, we modify the standard global game by assuming that players
have limited depths of reasoning. In particular, we focus on one specific non-equilibrium
theory that has received recent experimental and theoretical attention in the literature on
global games and informational frictions (Kneeland, 2016, Angeletos and Lian, 2017), namely
level-k thinking (Nagel, 1995; Stahl and Wilson, 1995).* Models of level-k thinking assume
that agents have limited depths of reasoning and, at the same time, provide a specific struc-
ture to agents’ beliefs. We show that this departure from fully rational play can significantly
alter the prediction of the standard global games theory. Specifically, with level-k types, the
effect of more dispersed information on agents’ actions and regime stability can be reversed
relative to the game with fully rational players.

Intuitively, with level-k agents, different cognitive types have different strategic cutoffs —
the value of private signals above which agents are better off attacking. At the same time,
there is a strategic complementarity across level-k types, so that the aggressiveness of a lower
cognitive type influences the aggressiveness of higher cognitive types. Higher information
dispersion acts to attenuate this across-type strategic complementarity. Specifically, when
lower cognitive types are relatively more aggressive than the higher cognitive types, the de-
crease in coordination due to more dispersed private information stabilizes the regime, as

perceived by the higher cognitive types, which reduces those agents’ willingness to attack.

4An overview of models and evidence of non-equilibrium strategic thinking is provided in Crawford,
Costa-Gomes, and Iriberri (2013).



Put differently, higher cognitive types become less aggressive with higher information dis-
persion. If this effect is strong enough, then increased information dispersion is stabilizing
in the level-k model rather than destabilizing.

To assess whether such a level-k model is quantitatively consistent with our experimental
findings, we follow Kneeland (2016) and structurally estimate a finite mixture model of play
with different level-k types, using data from both treatments. We additionally assume that
players are risk-averse, which ensures that the levels of the strategic cutoffs of behavioral
types are in line with our empirical data.® We estimate a common distribution of level-k
types for both treatments, assuming fixed play by L0 types across the treatments. Therefore,
our results are not driven by variation in L0 types’ perceived play or different distributions
of the level-k types across the two treatments but are purely due to the effect of information
dispersion on actions. Our estimates show that a level-k model, augmented with risk-averse
players, can explain the observed differences in the strategic cutoffs estimated from the two

treatments.

Related literature

Initial coordination experiments focused on static games with complete information (Cooper,
DeJong, Forsythe, and Ross, 1990, 1992; Straub, 1995; Van Huyck, Battalio, and Beil, 1990).
Such games have multiple equilibria and strategic uncertainty comes to the forefront. As a
response to this indeterminacy, the theory of global games was developed by Carlsson and van
Damme (1993). The theory was later advanced by Morris and Shin (1998) to macroeconomic
applications. The global games framework provides an explicit model of strategic uncertainty.
It shows that coordination games with multiple equilibria under complete information may
have a unique equilibrium if certain parameters of the payoff function are private information

instead of common knowledge.

5Risk aversion on its own cannot reverse the comparative statics in a standard global game model, since
it only dampens the effect of information dispersion in that model.



Heinemann, Nagel, and Ockenfels (2004) is the experimental paper closest to ours. It
tests the predictions of the theory of global games in a setting where the net payoff from a
successful attack is increasing in the underlying fundamental. In the unique global games
equilibrium agents use monotone cutoff strategies. Heinemann, Nagel, and Ockenfels (2004)
document that subjects tend to use such strategies, both under public and private infor-
mation. Widespread use of monotone, or near monotone, cutoff strategies has also been
documented in a broader class of global games experiments (Cornand and Heinemann, 2014;
Avoyan, 2017; Szkup and Trevino, 2017).° Our experimental results are in line with these
findings.

Kneeland (2016) analyses global games where agents engage in level-k thinking.” She
theoretically characterizes a coordination game where agents are of different level-k types.
Using experimental data from Heinemann, Nagel, and Ockenfels (2004), she shows that the
level-k model fits the data better than the fully rational model. Relative to this paper, we
provide a novel prediction on the effect of changes in information dispersion on different
cognitive types’ strategic cutoffs, and show experimental support for this prediction.

When the net payoff of a successful attack is increasing in the fundamentals as in our
experimental game, more precise private information should induce agents to become less
aggressive in equilibrium. The experimental literature, however, seems to document the
opposite. Heinemann, Nagel, and Ockenfels (2004) compare behavior under complete in-
formation to behavior under incomplete information. They find that subjects behave more
cautiously under incomplete information. Cabrales, Nagel, and Armenter (2007) test the
global games theory in a series of two-person games with a simplified information structure.
The design ensures that equilibrium is reached after only four rounds of elimination of (in-

terim) strictly dominated strategies. They find that subjects converge to the unique global

SHeinemann, Nagel, and Ockenfels (2009) develop a method to measure strategic uncertainty as an
alternative to varying the parameters of the game exogenously. They also find widespread use of cutoff
strategies. Heggedal, Helland, and Joslin (2018) find widespread use of cutoff strategies in a coordination
game with type uncertainty rather than uncertainty about fundamentals.

"Cornand and Heinemann (2014) analyze the relative weighting of public and private signals in a global
game by a k-level model and a cognitive hierarchy model.



games equilibrium under incomplete information, but that subjects behave less cautiously
under complete information.

In a recent contribution, Szkup and Trevino (2017) also consider an experimental setting
where the precision of private signals varies across treatments. Like us, they find that
the comparative statics are reversed relative to what the theory predicts. To explain the
reversal in the theoretical comparative statics Szkup and Trevino (2017) argue that there
is a link between players’ perception of strategic uncertainty and fundamental uncertainty.
They propose a “sentiment theory”, where as fundamental uncertainty increases, players
also become more pessimistic about the actions of others, which is modeled via a “belief
residual” term. When the belief residual term is allowed to depend flexibly on the level of
signal precision across treatments, the modified model can account for departures from the
theoretical benchmark.

We differ from and complement Szkup and Trevino (2017) along several dimensions.
First, we differ in the experimental setting. Specifically, they investigate a two-player in-
vestment game similar to Carlsson and van Damme (1993), while we consider a larger co-
ordination game of regime change. Second, and more importantly, we explain the reversed
comparative statics with a theory based on bounded rationality and limited depth of rea-
soning. In that theory we identify a novel effect of information quality on agents’ actions,
which is absent in the fully rational model. We then evaluate the ability of this theory to
explain the data. Importantly, in our empirical investigation of the level-£ theory we keep
both the distribution of level-k types and the perceived play of LO types fixed as we change

information quality.



2 Theoretical predictions

Set-up

We consider a regime-change game that can serve as a simple representation of the strategic
interactions involved in currency crises (Morris and Shin, 1998), debt rollover (Rochet and
Vives, 2004, Goldstein and Pauzner, 2005), and political change (Edmond, 2013). We follow
the notation from lachan and Nenov (2015), with a few modifications that are necessary
to enable a laboratory-based test of the theoretical predictions relating the information
structure to players’ actions and regime stability. Most importantly, we assume that there
is a discrete number N of players.

Agents take a binary action s; € {0,1} simultaneously. We interpret s; = 1 as player
i attacking the status quo. We let Z = ) .s; denote the number of agents who choose
s; = 1. A state variable Y (the fundamentals) determines agents’ payoffs, and also the
minimal number of agents required for a successful attack. We assume that Y is distributed
uniformly on [0, M], for M > 0 and is not directly observed by agents, who hold this
distribution as their prior belief about the state.

Regime change occurs if at least a fraction g (Y') € (0,1) of agents attack, where g (-) is
a decreasing function of the fundamentals.® We define G (Y) = [¢g (V) N7, so that regime
change occurs if, and only if, Z > Gn(Y).

We normalize the payoff from action s; = 0 to zero in the case of both regime change
and status quo survival and specify the payoffs in case of s; = 1 as follows: the payoff to a
player who attacks is D(Y") in case of regime change and U(Y") in case of status quo survival.
We assume that D (Y) > 0 and U (Y) < 0 and that both are either constant or strictly
increasing in Y. As a consequence, actions are strategic complements.

Before choosing actions, agents observe noisy signals about the state Y. Specifically, we

assume that player ¢ observes a signal x; = Y + n;, where n,’s are distributed uniformly on

8Therefore, higher Y means weaker fundamentals in this setting.



[—€,€], € > 0, and € < M, independently across players. Also, 7; is independent of the
realization of Y. We define E,, |-] as the expectation with respect to the information set of

an agent that receives signal x;.

Equilibrium

The definition of a Bayesian Nash Equilibrium for our game is standard (see Morris and Shin
(2003)). We restrict attention to equilibria in monotone strategies. A monotone strategy Y*
is such that s (x;) = 1iff z; > Y™*. In that case it is straightforward to apply standard results
from global games to show that there is a unique equilibrium. Furthermore, the restriction
is without loss of generality (Morris and Shin, 2003).

We call the critical value Y* the strategic cutoff. Note that for a given value Y* in the
finite-player case, the number of players who observe a signal above Y* and thus choose
s; = 1 is stochastic. Given a value of the fundamental Y, with signals uniformly distributed
on the interval [Y — €, Y + €], the probability that at least K players get a signal above Y*

is given by the tail distribution of a Binomial random variable

N
_ N
Fy(K,Y,Y*) = § : p(YV, Y ) (1 —py, v )V * (1)
E>K k

where

Y —-Y*
p(Y,Y*,e):min{max {O,+;—},1} (2)
€

Therefore, the probability of regime change given a state Y is
P(Y,Y*)= Fn(Gy(Y),Y,Y™) (3)

Note that P (Y, Y*)=1forY >Y*+eand P(Y,Y*)=0for Y <Y*—e. Also, P(Y,Y")

is defined as a tail distribution evaluated at the endogenous Gy (Y). It is also convenient



to define the probability of regime change for a player that attacks (s; = 1). We define this
probability by P (Y,Y™*). Specifically, a player that attacks expects regime change to occur

if at least Gy — 1 of the remaining N — 1 other players attack, which gives
P(Y,Y*)=Fy_1(Gy(Y)—1,Y,Y") (4)

Given this probability of regime change, Y* is determined by an indifference condition for a

marginal agent — a player who observes a signal x; = Y. Specifically, Y* solves
Ey. [D (V)P (Y,Y*) + U(Y) (1 _P(Y, Y*))} ~ 0. (5)

That is, for a marginal agent, the expected payoff from attacking equals the payoff from not

attacking.

As shown by Iachan and Nenov (2015), with a continuum of players, the effect of infor-
mation quality on the equilibrium of this game depends on a comparison of the sensitivities
of payoffs in the case of regime change and status quo survival. In our experiment, we focus
on the case where U (Y) = U < 0 and D (Y) is strictly increasing in Y. This nests many
global games applications, such as the literature on currency crises (Morris and Shin, 1998).

The prediction of the model that we aim to test experimentally is the comparative static
of Y* with respect to €. In this context, increased information dispersion is destabilizing
(Iachan and Nenov, 2015). That is, if N — oo, U(Y) = U < 0, VY and D(Y) is strictly

increasing, then %L* <02
€

9The same comparative statics also hold away from the limit N — oo.



3 Experimental implementation

In order to implement the model in the lab, we closely follow Heinemann, Nagel, and Ock-
enfels (2004).1° The experiment is implemented as a series of 8 independent rounds. In each
round each subject makes 10 independent binary choices. We organize subjects in groups
of N = 10, with subjects indexed by ¢. The rules of the game are made public knowledge
through the reading of instructions aloud.!* Unique subjects are used in all sessions. The
language of the experiment is neutral.

At the beginning of each round, 10 different values of Y are drawn, where Y is distributed
uniformly on [0,100]. For any realization of Y, individual signals x; are then drawn inde-
pendently according to a uniform distribution on [Y — €, Y 4 ¢]. Each individual signal is
revealed to subject ¢ but not to the other subjects in the group. Within a treatment and a
given round, the list of fundamentals (V') are identical for the subjects in different groups,
while the list of signals (z;) varies over subjects. Given their signals, subjects are asked to
make a decision, A or B for each of the 10 decision situations in that round. In the context
of the model outlined above, A correspond to s; = 0 and B correspond to s; = 1. Subjects
get a feedback after each round. For each of the 10 games on the list, this feedback consists
of the number Y, the number of subjects that decided for A and B, and the subject’s own
payoff.

If a subject chooses A, she receives an endowment of 20 experimental currency units. If the
subject chooses B, she receives a payoff which depends on both the number of other subjects
who chose B and the state Y. Regime change takes place if G1o(Y) = [10(80 —Y) /60]
individuals choose B. More specifically, our payoff structure is as follows. Let Z be the
number of agents in a group that attacks. m(Y, Z) is the net payoff from choosing B, given

the fundamental Y and the actions of the group members. 7 (Y, Z) is increasing in Y.

10We adopt the same payoff functions and other parameters as in their (T=20; Z=60) treatments. Our
experiment is based on the same zTree files and the same instructions as their experiment. The only
differences, aside from the subject pool, is that we consider groups of 10 rather than 15 subjects and that
we replace their complete information treatment with our High Noise treatment.

Hnstructions for the high noise treatment are available at: http://www.leifhelland.net/working-papers/

10



Treatments Low Noise High Noise
(e=10) (e=20)
Theoretical cutoff Yi=414 Y= 3738
Expected treatment difference | Y —Y; = 3.6

Table 1: Theoretical prediction.

Y =20 :Z>GpY)

—20 < Glo(Y>

With this set-up, observe that playing A is dominant if Y < 20 and playing B is dominant
ity > 74.

We run a simple design in which the only treatment is the dispersion in the private sig-
nals, parametrized by the noise term e. Specifically, we consider two treatments — a Low
noise treatment with €7, and a High noise treatment with ey > €. Let Y;" denote the
theory-implied strategic cutoff for treatment j = {L, H}. The theoretical predictions are

summarized in Table 1.

We collected data on 8 groups in the High Noise treatment and 8 groups in the Low Noise
treatment, a total of 160 subjects. The sessions were run in the BI Norwegian Business
School Research Lab from May 2016 to June 2017. The experiment was programmed in
z-Tree (Fischbacher, 2007) and subjects were recruited from the general student populations
of BI Norwegian Business School and the University of Oslo using the software ORSEE
(Greiner, 2015).

11



4 Results

Our first question is to what extent subjects follow the equilibrium requirement of using
undominated cutoff strategies in our experiment. For each player i and each round ¢, let z:}
be the highest signal at which subject i chooses A and zZ be the lowest signal at which she
chooses B. We say that a subject’s behavior is consistent with a cutoff strategy in round ¢,
if 28 > 2. Letting € be the noise in each treatment (e € {10,20}), observe that playing B
is dominated by A whenever z;; < 20 — € and A is dominated by B whenever x;; > 74 + €.
We say that a subject’s behavior is consistent with an undominated cutoff strategy if it is
consistent with a cutoff strategy, and 2% > 20 — e and 27} < 74 +e.

Overall, the observed behavior of the subjects is largely consistent with playing undom-
inated cutoff strategies. On average, 89 % of the subjects play in a way consistent with
undominated cutoff strategies in the Low Noise treatment. In the High Noise treatment,
the corresponding number is 92%. There is also some evidence of an increasing reliance on
undominated cutoff strategies over time. Figure 1 shows the evolution in the use of cutoff
strategies over time for each of our treatments. The percentage of subjects whose behavior

is consistent with undominated cutoff strategies is increasing as play progresses.

% subject behavior consistent with und. thresh. strat.
% subject behavior consistent with und. thresh. strat.

0 2 4 6 8 0 2 4 6 8
Round Round

Low Noise High Noise

Figure 1: Percentage of subjects, whose behavior is consistent with undominated cutoff
strategies.

Result 1 (Cutoff strategies): Subjects play consistently with undominated cutoff strate-

12



gies.

To estimate strategic cutoffs we take the average, individual by individual, of the highest
signal for which a subject chooses A and the lowest signal for which the subject chooses
B. We then take the mean of these cutoffs within each group and refer to it as the Mean
Estimated Threshold (MET).

In what follows we focus on first round behavior. The level-k theory explored in Section
5 below is meant to address initial play in unfamiliar environments, before learning kicks in
(Crawford (1995)). Experimental evaluations using models of limited depths of reasoning,
therefore, typically focus on first round behavior (Crawford, 1995, Camerer, 2011, chapters
1 and 6). Result 4 suggests that there is some learning going on in our data. Thus, focusing
on first round behavior appears justified.'?

Table 2 reports the mean estimated cutoff using first-round data and average behavior
per group as observations. Data in the table are ranked in ascending order for each treatment
based on the METs. As is evident, in each ordered pair of groups, the MET is higher in the

High Noise treatment.

Group #
Low noise High noise
1 22.8 31.8
2 30.2 35.8
3 35.9 39.4
4 38.0 41.3
5 39.9 44.6
6 40.8 48.7
7 44.4 49.5
8 44.8 51.5
Mean cutoff (Y;) 37.1 42.8
Standard deviation 7.4 6.9
Theoretical predictions 41.4 37.8

Table 2: Estimated strategic cutoff; first round data only, ranked groups.

12Note, however, that results are qualitatively and quantitatively similar when using all data and preform-
ing a logit estimation of individuals likelihood of attacking conditional on their signals, treatment and an
interaction-term.
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Having obtained the METSs across groups and treatments, we proceed to testing the
model predictions.

A crucial comparative static of the model is that the MET in the High Noise treatment
should be lower than in the Low Noise treatment. From Table 2 the observed difference, av-
eraging over groups in each treatment, is the opposite: the MET in the High Noise treatment
is 5.7 units higher than in the Low Noise treatment.

To formally test whether the difference across treatments is significant, we follow a con-
servative approach and run a Mann-Whitney U-test where we compare the rank-sums of
METSs using group averages as units of observation. The null hypothesis is that the MET
is not higher in the Low Noise treatment than in the High Noise treatment. The results are
shown in Table 3. We reject the null hypothesis with a p-value of 8%. Hence, the strategic

cutoffs are lower in the Low Noise treatment compared to the High Noise treatment.

Treatment Obs  Expected Rank sum Rank sum

Low Noise 8 68 5}
High Noise 8 68 81
p-value 0.08*

Table 3: One-sided Mann-Whitney U-test of comparative statics.

Result 2 (Comparative statics): The estimated strategic cutoffs are lower in the Low

Noise treatment compared to the High Noise treatment.

According to the model, the treatment difference between the estimated cutoffs should
be approximately 3.6. As noted, the observed difference is -5.7. Table 4 reports the results
from a two sided Mann-Whitney U-test where the null hypothesis is that the difference in
METs is 3.6. Again, the test uses only first round data and has group averages as units of

observation. We reject the null hypothesis that Y — Yy = 3.6 with a p-value of 3%.'3

13Note that Y, — Yy =3.6 = Y} — Y, =Y}, — Y.
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Treatment Obs  Expected Rank sum Rank sum

Yi-Y, 8 68 48
Yi—Yy 8 68 88
p-value 0.03**

Table 4: Two-sided Mann-Whitney U-test of treatment difference.

Result 3 (Treatment difference): The treatment difference is significantly different from

what is implied by theory.

The evolution of the average estimated cutoffs over time is shown in Figure 2. There are

some indications of learning, as cutoffs converge over time.

Result 4 (Evolution of play): Some convergence of behavior over time.

46
44
42

40

Mean threshold

38
36
34

Round

— Low noise High noise

Figure 2: Average estimated strategic cutoffs for each treatment, by round.
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5 Deviations from equilibrium theory

The results in the previous section suggest that the comparative statics of the strategic cutoff
with respect to information quality go in the opposite direction relative to the theory. In

this section, we propose one explanation for this finding.

5.1 Level-£ thinking

Level-k thinking is a frequently used solution concept in Behavioral Game Theory.!* It
features limited depths of reasoning, adds a specific structure to agents’ beliefs, and is
particularly meant to capture players’ initial behavior in strategic games, before learning
induces higher levels of sophistication. In this framework, each player’s type Lk is drawn
from a discrete distribution over k € {0,1,..., 00}, where Lk denotes a type that engages
in k£ rounds of reasoning. In particular, the behavior of L0 types is specified as a model
primitive, and L0 types have zero mass. An L1 type best replies as if all other agents are
L0 types, an L2 type assumes that all other agents are L1 types, and so on.

The main appeal of a level-k model in our setting is that it can change the comparative
statics from the standard global games theory on how information dispersion affects players’
actions and regime stability. In the standard global games model with fully rational types
changes in information dispersion affect players’ actions only through a “payoff sensitivity”
effect (Iachan and Nenov (2015)). This effect is present when the net payoffs from attacking
over not attacking, given regime-change or no regime-change, depend on the fundamental.
In our specific environment, this effect implies that a higher value of information disper-
sion makes players more aggressive, since it increases their fundamental uncertainty and,
consequently, their expected payoff conditional on regime change.

In the level-k model, unlike the fully rational model, a level-k player that best responds to

level-(k — 1) players may end up playing according to a different cutoff strategy compared to

14Gee, for instance, Nagel (1995); Stahl and Wilson (1995); Kubler and Weizsacker (2004); Crawford,
Costa-Gomes, and Iriberri (2013).
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the level-(k — 1) types. This opens up the possibility for a novel effect of information quality
on players’ actions. To understand this effect, note that there is a strategic complementarity
across types of different levels. Specifically, the aggressiveness of the level-(k — 1) types (i.e.
the location of their cutoff) influences the level-k type’s cutoff (and, through that cutoff,
affects higher levels). Higher information dispersion attenuates this across-type strategic
complementarity, since it makes players less coordinated when attacking and also reduces
their ability to forecast the actions of other players. Therefore, if level-(k — 1) types are
more aggressive than level-k types, higher information dispersion will make level-k types
react less to the aggressiveness of level-(k — 1) types. Put differently, level-k types become
less aggressive with higher information dispersion.

In the Appendix we formalize this “strategic attenuation” effect of higher information
dispersion in the level-£ model and also show that under some conditions it goes against
and even dominates the “payoff sensitivity” effect. Specifically, the comparative statics with
respect to information dispersion can be reversed, provided that there are sufficiently many
agents that engage in few rounds of reasoning, and L1 types are relatively aggressive. In
terms of model primitives, since L1 types tend to be more aggressive when they expect L0
types to play more aggressively, the comparative statics are reversed in a level-k model,
provided that there are sufficiently many types that engage in few rounds of reasoning, and

L0 types are expected to play sufficiently aggressively.

5.2 Empirical evaluation

In this section, we evaluate empirically whether the level-k model can account for the devi-

ations from equilibrium theory that we have documented in Section 4.
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5.2.1 Methodology

To separate the subjects into different level-k types, we follow Kneeland (2016) and estimate
a finite mixture model on our experimental data.'> We allow subjects to be L1, L2, and
equilibrium types, which we denote by Lk, k € {1,2,00}.'5 We denote the share of Lk types
by pr, with ps, denoting the share of equilibrium types.

As highlighted in the previous section, a level-k model can lead to a reversal of the
comparative statics, provided that two conditions are satisfied. First, there are sufficiently
many types that engage in few rounds of reasoning and, second, L0 types are expected to
play sufficiently aggressively. Therefore, in our empirical implementation, we assume that
L0 types are expected to play aggressively. Specifically, we assume that L1 types believe
that L0 types attack with probability 1.7

While most of the literature in which level-k models are used to explain data from
experimental games assumes that L0 types randomize uniformly over actions (Crawford,
Costa-Gomes, and Iriberri, 2013, and references therein), the literature on experimental
coordination games has shown that initial play tends to be biased towards payoff dominant
actions (Costa-Gomes, Crawford, and Iriberri, 2009).'®* Moreover, assuming that L0 types
randomize uniformly in global games of regime change (so that the share of agents attacking
is uniformly distributed) leads to the fully rational equilibrium, since L1 types end up holding
(and reacting to) Laplacian beliefs about the remaining players’ actions (Morris and Shin,
2003). For these reasons Kneeland (2016) assumes that L0 types play more aggressively than
uniform randomization in her empirical investigation of a level-k model in an experimental

global game. Our assumption of aggressive L0 types is, therefore, in line with this previous

15We follow the estimation procedure for finite mixture models in Mofatt (2016), chapter 8.

16 As in Kneeland (2016), equilibrium types engage in infinite rounds of reasoning, so they play according
to the equilibrium strategies from the global games model.

1"In the Online Appendix we explore the robustness of our results with respect to this assumption when
L0 types are expected to play less aggressively. Our empirical results also hold qualitatively for lower levels
of aggressiveness by L0 types.

18 A deviation from this assumption is also found in the literature on auctions, where L0 types are assumed
to bid their value conditional on their own signal (Crawford and Iriberri, 2007).
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work on level-£ models in experimental global games. We also note that we do not treat the
aggressiveness of L0 types as a free parameter that can vary across treatments.

Notice, however, that due to the across-type strategic complementarity in the level-k
model, the assumption of aggressive L0 types reduces the strategic cutoffs for the behavioral
types. Consequently, given the observed play in our experimental data, our estimation
procedure would end up classifying the majority of players as equilibrium types. Therefore,
to ensure that the levels of the strategic cutoffs of the Lk types are in line with our empirical
data, we assume that players are risk-averse. Specifically we assume that players have
constant relative risk aversion (CRRA) preferences and set the players’ coefficient of relative
risk aversion to 2/3, in line with estimates from the existing experimental literature (Harrison
and Rutstrom, 2008). Introducing risk-aversion raises the strategic cutoffs for all types,
while preserving the predictions of the level-k model with respect to changes in information
dispersion.*?

We further assume that each subject follows the action of a particular Lk type with some
error. Specifically, in each decision round a subject makes a decision consistent with her
type with probability 1 — v and makes an error with probability v. If the player makes an
error, the choice depends on an error density d* (afl, )\) specified below.

Let @ = {1,2,...,10} denote the set of all decisions, ¢ € @ denote a specific decision
instance, and ag denote the choice of subject ¢ in instance ¢q. For each subject xtype, we
define the set Q* C @, which consists of all instances ¢, where subject i made a choice
af] consistent with type Lk. Weighting over the different types (k) and summing over all

subjects (i), we get that the log-likelihood of observing a particular set of choices is

N 3
L= Z log Zpk (Myeqin (1 — v +vd (aisN))) (quikudk (ai: M) |- (7)
i=1 k=1

19Risk aversion on its own cannot reverse the comparative statics in a standard global game model, since
it only dampens the “payoff sensitivity” effect. In the Appendix we present the estimation results with
risk-neutral types. The estimated share of equilibrium types in that case is 71%.
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Parameter Estimate

Fraction of level-1 agents ( p; ) 0.22
[0.09]

Fraction of level-2 agents ( ps ) 0.56
[0.05]

Fraction of equilibrium types ( 1 —p; — ps ) 0.22
[0.09]

Trembling rate (v ) 0.94

[0.25]

Precision of error density (\) 0.52
[0.11]

n 1600

Table 5: Results from estimating equation (7) on data from round 1. Bootstrapped standard
errors in brackets.

The parameter X is a precision parameter in the error density

exp {AS; (ay) }
exp {AS¥ (attack) } + exp {ASF (not attack)}’

d* (al, ) = (8)

where S(’; (af]) denotes the expected payoff of an agent of type Lk at decision instance ¢, who
makes a choice afI.

The unit of analysis is now individual decisions, which is in line with the existing literature
on coordination experiments (Costa-Gomes, Crawford, and Iriberri, 2009; Crawford, Gneezy,
and Rottenstreich, 2008). We fit 4 independent parameters, namely p;, po (the fractions of
types L1 and L2), A, and v, on data from the first round for both treatments. In the
numerical maximization of the likelihood function, we constrain all parameters to take on

non-negative values.

5.2.2 Results

The results are shown in Table 5. The fraction of level-k types is estimated to be 78 %. This
is roughly in line with the estimate from Kneeland (2016). Most agents are classified as 1.2,
albeit with a relatively large probability of trembling.

We proceed by investigating whether the estimated level-k model can rationalize our
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experimental findings. A simple first pass is to compute the weighted average of the theory-
implied strategic cutoffs, using the estimated distribution of Lk types from Table 5 as weights
and investigating whether the resulting average cutoff in the Low Noise treatment is lower
than the average cutoff in the High Noise treatment.2?’ This yields an average strategic cutoff
of 34.84 in the Low Noise treatment, and 40.17 in the High Noise treatment. Put differently,
agents are, on average, less aggressive in the High Noise treatment compared to the Low
Noise treatment, which is in line with our experimental findings.

A caveat with the preceding exercise is that it does not take into account that our
estimated model allows for trembles. We proceed with the following simulation exercise: We
simulate 1000 sessions, whereby in each session 640 games are played. For each session and
game, agents draw a type according to the estimated type distribution from Table 5. We
then assume that agents play according to their drawn type, with a probability of trembling
equal to our estimated v. Conditional on trembling, agents choose actions according to the
spike-logit density ((8)), governed by the precision parameter \. For each game, we then
compare the mean cutoffs across a high and a low noise treatment, denoted by él and éh,
respectively.

Figure 3 plots the empirical CDF of the differences between average strategic cutoffs
across the two treatments (6, — 6,) using the simulated data. More than 95% of the sim-
ulated sessions have negative differences in estimated strategic cutoffs, indicating that the
comparative statics are flipped relative to equilibrium theory. We take this as evidence that

the level-k model, combined with risk-averse players, can explain our experimental findings.

6 Concluding remarks

In this paper we experimentally test how changes in private information precision affect

regime stability in a standard global games model. We show that contrary to the theoretical

20The theory-implied cutoffs in the Low Noise treatment are 20.56, 33.77 and 52.11 for L1, L2 and Loo
respectively. For the High Noise treatment, the corresponding cutoffs are 22.44, 42.68 and 51.69.
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Figure 3: Empirical CDF of estimated cutoff differences from 1000 simulated sessions. Dot-
ted lines indicate 95% confidence intervals as computed by Greenwoods formula.
predictions agents become less aggressive when information dispersion increases. We show
that augmenting the standard global games set-up with boundedly rational agents that
engage in level-k thinking can help explain our experimental finding. In the level-k model,
information quality affects agents’ actions through a novel channel, which does not operate
in the fully rational model. Moreover, that novel channel can reverse the comparative statics
with respect to changes in information precision.

The fact that the fully rational and level-k models can differ so dramatically in their
predictions about the effect of information quality on behavior points to the importance
of studying more carefully global coordination games with boundedly rational agents, both

theoretically and experimentally. We view this as a promising venue for future research.
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Appendix

The effect of information quality with level-k thinking.

In this appendix, we provide an example of why level-k thinking is capable of generating the
comparative statics that are in line with what we document in the experiment. Consider
the set-up from Section 2, but assume that N — oo for simplicity (i.e. we analyze a
large game rather than a game with a finite number of players). Regime change occurs
if a fraction g (Y) of players attacks, where g is continuously differentiable and (weakly)
decreasing in Y. Also, we consider U (Y') = U < 0 and define d (V) = D (Y) — U, as in our
experimental game. Given the assumed properties of D (Y), d (Y) is also strictly increasing
in Y. Assume that agents have limited depth of reasoning. Following Kneeland (2016),
we assume that L1 agents believe that the aggregate behavior of L0 types is given by the
cumulative distribution function @ (z]Y'), where z denotes the fraction of agents that attack.
Here, @ (z|Y") is continuously differentiable and weakly decreasing in Y, so that L1 types

believe that a higher value of Y leads to a larger share of L0 types attacking.

L1 types

Consider an L1 type that observes a signal z; and denote her net payoff from attacking vs.

not attacking by

7t = E[DY)|z>g()Pr{z>g(Y)}+UPr{z<g(Y)}

= E[dY)[z>g(Y)]Pr{z>g(Y)}+U

Consider a typical L1 type that observes a signal z; € [e, M — €], i.e. a signal which is not too

close to the extremes of the support. Her posterior belief about Y is distributed uniformly
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L1

on [z; — €,z; + €| and we can write m;"' as,

= [am - Quon vl ay v

3—€

Define d(Y) = d(Y)[1 — Q (g(Y)[Y)]. Therefore, d combines the net payoff from attacking
over not attacking, given a successful attack, d (YY), with the probability of regime change

occurring. Note that given the assumptions on d and Q, d (Y) is strictly increasing in Y.

L1
dr;

Notice that .
X

> 0, so L1 types that observe a higher signal have a higher net payoff from
attacking both because they expect a higher value of Y (i.e. weaker fundamental) but also
because they believe that L0 agents will play more aggressively. Next, denote the strategic

cutoff of L1 types by x7,. That cutoff satisfies:
T te 1
#%:/‘ dﬁquY+U:Q (9)
Tr1€ €
Agents with signals to the right (resp. left) of a7, always (never) attack. Lemma 1 charac-

terizes how the behavior of L1 types varies with signal precision.

Lemma 1. In the game described above L1 agents attack according to monotone strategy

with a cutoff x7,, defined in (9). Furthermore,

or* 1 §
86L1 o —/_1d/(xm + €t)t dt.

Y —ax*% . N
—LL to write 77! as

Proof. We can use a change of variables ¢t =

1
ﬁ“:—/d@ﬁ+®ﬁ+U

1

Therefore,

aﬁ_Ll 1 1 5
== d (z% t) tdt
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dﬁ'Ll
b) *
dxj

Since > 0, by the implicit function theorem we have that,

or* 1 .
TM o —/_1 d (z], + et) tdt.

]

With the payoff structure as in our experiment, the behavior of L1 types will not change
with changes in e, since their perceived probability of regime change is noise invariant.
Additionally, when noise is small, to a first-order approximation the effect of changes in

noise on the behavior of L1 types is zero.

Example 1. Constant resilience and LO types play independently of Y: If d (V) =
Y,g(Y)=gand Q(2|Y) = Q (2),— [}, d (x}, + et) tdt = 0.

Example 2. Small noise: Noise independence holds in the limit, as lim._, f_ll d (x5, +et)t dt =

d (limeyo 27 ,) f_ll tdt=0.

L2 Types

Next, consider the L2 types. Define YLf1 as

Yf—i-e—:c* 1 v/S — g
Yf>_L1—L1_ Yir Tt 10
9<L1 % 5T o5 (10)

Therefore, L2 types believe that regime change takes place if Y > YLfl.21
As with the L1 types, consider a L2 type that observes a signal x; and denote her net

payoff from attacking vs. not attacking by

it = pedy A E[DO) Y v s uee{y < v}

= Pe{v > YA} E [am) Y > Y| +U

21'We suppose further that YLf1 € [2e, M — 2¢], to abstract away from complications arising because of the
bounded support of the uniformly distributed private signals.
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L2 types that observe a signal z; € [Y,fl — ¢, Y/, + €| are not sure of either regime survival
or failure, so this is the signal interval of interest for the strategic cutoff characterization.

They have a posterior belief about Y, which is distributed uniformly on [x; — €, x; + €], and

we can write /2 as

Tit+e 1
it = / d(Y) 5V +U.
€

f
Yia

L2
drm;
dz;

As with L1 types, > 0, so L2 types that observe a higher signal also have a higher net

payoft from attacking. We denote the strategic cutoft of L2 types by z7},, which satisfies

x]ote 1
72 ::/ d(Y) 5.V +U=0. (11)
€

f
Yia

Lk Types

One can proceed recursively and define the strategic cutoft for an Lk type, k > 2, x7, as the

solution to

Ty Te 1
/ d(Y)—dY +U =0, (12)
v/ 2e
L(k—1)
where Y/, is the failure cutoff given optimal behavior by L (k — 1) types, defined as
L(k—1)

(13)

Strategic attenuation effect of higher information dispersion

We next show that changes in information quality e may change the optimal behavior of Lk
types differently from the effect of information quality on equilibrium play. Specifically, we
show two results to that effect. The first is for an arbitrary distribution of level-£ types but
a more specific payoff function d. The second is for a model with just L1 and L2 types but
with a more general payoff function d.

First, we assume that d (Y') = d. We make this assumption to completely switch off the
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“payoff sensitivity” effect from changes in information dispersion €, emphasized in lachan and
Nenov (2015), when d is a function of Y. Specifically, this effect implies that a higher value of
€ makes agents more aggressive, since it increases fundamental uncertainty and, consequently,
the expected payoff conditional on regime change. This "payoff sensitivity” effect is the
only effect that operates in a global games model when agents engage in equilibrium play.
Switching off this effect implies no effect of information precision on equilibrium play. For

simplicity, we also assume that we have a linear resilience function g (Y) = a + Y.

Proposition 1. Consider the game described above and let d (Y) =d, and g (Y) = a+ BY,
p < 0. Let x%, be the strategic cutoff of a Lk type, for k > 2, defined as in ((12)) with the

cutoff for L1 types as defined in (9).

o} . . :
o [fa}, > a7, ,, then % < 0, so, higher noise makes Lk types more aggressive.

X
3

o Ifx}, <xp_y, then —-

> 0, so, higher noise makes Lk types less aggressive.

o Ifay, = a7y, then &gé’“ = 0, so, higher noise has no effect on the behavior of Lk

types.
Proof. Define h(x) implicitly by

h(z)+e 1
/ d—dY + U =0, (14)

Y/ (x) €
where Y/ (z) is the failure cutoff if agents play according to a cutoff z, i.e.

Y/ (2) -

5 (15)

g (Y (2)) —%%—

Therefore, h () is the cutoff for an agent that believes everybody else plays according to
cutoff . Notice then that zj, = h <xz(k_1)>, for £ > 2. Also, if x%_ denotes equilibrium

play, «%_ solves x* = h (z%,). Therefore, 27, — x¥% . Next, note that

B 1 1
T 1-2eg (Y (2))  1—2eB =

h' (z) 1.
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Therefore, {27, },-, defines a monotone sequence, so that if 27, < z%, then Ty < Tk <

*

x and vice versa for x7, > 2% . Noting that % (W' (z)) < 0, it follows that an increase in €

ozt _ Oh(zk)
s Oe

leads to flattening of h (x). Furthermore, since = 0, it follows that for z < z%_,
h (x) must strictly increase, while for x > ¥ , h(x) must strictly decrease. Noting that
X7 > Ty, Vk > 2 implies a7, < x5 and vice versa for x7, < x7,_,, we arrive at the first
and second observation in the proposition. Finally, since z = h () has a unique solution (by

uniqueness of the global games equilibrium), it follows that z7, = x7,_,, implies 27, = zZ,

Vk > 1, which leads to the third observation. O

Intuitively, an increase in the dispersion of private noise attenuates the strategic comple-
mentarity across level-k types, since it makes agents less coordinated when attacking and
also reduces their ability to forecast the actions of other agents. At the equilibrium cut-
off that effect is not relevant, however, if agents best respond to agents that do not play
according to the equilibrium cutoff, as in the level-k model, that effect becomes important.

Next, we show that this “strategic attenuation” effect operates also when the payoff
function d depends on Y, so that the “payoff sensitivity” effect is not switched off. Suppose,
for illustration, that there are only two level-k types: L1 and L2. We next show that the
behavior of L2 types with respect to changes in the signal precision depends on a comparison

of the strategic cutoffs of L1 and L2 players similar to the comparison from Proposition (2).

Proposition 2. Consider the game described above and let g (Y) = g and Q (2|Y) = Q (2).

Let x5, and x5, be the strategic cutoff of L1 and L2 types as defined in (9) and (11) above.

ox

o Ifx}, > Ty, then =2 <0, so, higher noise makes L2 types more aggressive.

ox* . .
252 > 0, so, higher noise makes

o There exists a A > 0, such that for x;, < x5, — A,

L2 types less aggressive.

Proof. From Lemma 1, z7, does not depend on € given ¢ (Y) =g and Q (z|Y) = Q (). We
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*
Y—x7,

542 to write 712 as

use a change of variables t =

L2
2e

1/2
erQ:/f . d(x]y+2et)dt + U.
YLlfz

Therefore,

o2 Y/ —a},  10Y/ 12
T _ <_L1—‘”L2+_¢ d(y/.ﬁ) +/f d' (a7}, + 2et) 2tdt.

Oe 2¢2 2¢ Oe

Notice that
aYLfl _ 1 YLfl — T

O 1oy (vH)

After undoing the change of variables, we have,

aAL2 Yf ek 1 Yf ek 1 T ote 1
LI IS A ) * ] R L1~ ' dlyl )+ = d (Y)Y —a%,) —dY.
Oe 2¢? 2¢2 f L L2/ 9¢

1 —2eg’ (Ym)

Therefore, by the Implicit Function theorem,

*
ox;,

Oe

Yf " x] ,+e
opp = Vi — BTl N a (V) - [ @) - o) ay
1 — 2g’ <YL1)

With g (Y)=g¢,4¢ =0, so

*
T, te

8x* * * U *
o i et d () = 70 00—y

Furthermore, with d (Y) =Y, d' (Y') = 1, so,

oxs . . 1 .
852 (8 ($L2 —T7,) YLf1 - (‘YQ — x75Y
1
2

o (T — ) YLfl +
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25 » - . 20
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Figure 4: Illustrative example of Proposition 5. In the left panel, LO agents attack with
probability 0.45. In the right panel, LO agents attack with probability 1. We assume g = 6.5
and that payoffs are in line with our experimental implementation, i.e. D (Y) =Y — 20 and
U = —20.

Note that

(79 — 271) YLfl + B (YLfl - 5EL2> - 562 > (279 — 771) YLfl - 552 > (wp9 — 77;) 26 — 5627

83722 . * *
52 depends on a comparison of 27, and z7,. Suppose

since Y]fl > 2¢. Then the sign of

Then, iz > . Setting

that 27, < 27,. Then X2 < . Suppose that 7, — z7; > £ B

Oe 4

A:

$, we arrive at our result. O

Figure 4 shows two examples based on the payoftf parametrization from our experiment
that confirm that both cases of Proposition 2 are relevant. In the left panel, L1-types believe
that LO-types play relatively cautiously, so they also play relatively cautiously compared to
the equilibrium (fully rational) types. In the right panel, L1-types believe that LO-types play
relatively aggressively, so they tend to play more aggressively relative to the equilibrium
types.

The intuition for why the effect of information precision is ambiguous follows from a
comparison of the “payoff sensitivity” and “strategic attenuation” effects. As in the case of
fully rational agents, there is a “payoff sensitivity” effect when d depends on Y. When z7, >

X7, the “strategic attenuation” effect reinforces the “payoff sensitivity” effect. However,
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when 27, < xj,, the “strategic attenuation” and “payoff sensitivity” effects oppose each
other. When 27, is sufficiently different from x7,, the “strategic attenuation” effect ends
up dominating the “payoff sensitivity” effect and the comparative statics reverse — L2 types
become less aggressive.

As agents engage in more rounds of reasoning (and approach the fully rational types) the
difference in the strategic cutoffs between level-k and level-(k —1) types tends to decrease (as
they converge to the strategic cutoff of the fully rational types). Consequently, the “strategic
attenuation” effect tends to weaken. Therefore, the comparative statics with respect to
information dispersion can be reversed, provided that there are sufficiently many agents
that engage in few rounds of reasoning and L1 types are relatively aggressive. In terms of
model primitives, since L1 types tend to be more aggressive when they expect L0 types to
play more aggressively, the comparative statics are reversed in a level-k model, provided that
there are sufficiently many types that engage in few rounds of reasoning and L0 types are

expected to play sufficiently aggressively.
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Parameter Estimate

Fraction of level-1 agents ( p; ) 0.07
[0.04]

Fraction of level-2 agents ( ps ) 0.22
[0.08]

Fraction of equilibrium types ( 1 —p; — ps ) 0.71
[0.07]

Trembling rate (v ) 0.42

[0.09]

Precision of error density (\) 0.02
[0.01]

n 1600

Table 6: Results from estimating equation (7) on data from round 1. Bootstrapped standard
errors in brackets.

Additional empirical results

Level-k model estimation with risk-neutral agents

The results from estimating the level-k model with risk-neutral agents are shown in Table 6.
Using the estimated fractions and the strategic cutoffs from the different types yields a
average cutoff of 34.95 in the High noise treatment and a average cutoff of 37.14 in the Low

Noise treatment.

Level-k model estimation with less aggressive LO

In our baseline specification, we assume that LO types attack with probability 1. As a
robustness exercise, we have redone the estimation assuming that LO types are expected
attack with probability 0.8. The results are shown in Table 7.

Using the estimated fractions and the strategic cutoffs from the different types yields a
average cutoff of 44.2 in the High noise treatment and a average cutoff of 41.36 in the Low

Noise treatment.
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Parameter Estimate

Fraction of level-1 agents ( p; ) 0.82
[0.10]

Fraction of level-2 agents ( ps ) 0.00
[0.05]

Fraction of equilibrium types ( 1 —p; — p2 ) 0.18
[0.09]

Trembling rate (v) 0.60

[0.16]

Precision of error density () 0.27
[0.09]

n 1600

Table 7: Results from estimating equation (7) on data from round 1. Bootstrapped standard
errors in brackets.
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