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1. Introduction

Real options, such as the option to interrupt a product’s development and schedule
its release, lack clear contractual terms. For instance, they typically do not expire on a
proper deadline, but lose a significant part of their value if a competitor moves first.

Consider a race between several firms to develop, produce, and market an autonomous
car. The first marketed product gets the possibility to set-up a new industry standard,
lock in key suppliers, and obtain significantly higher profits than any follower. Although
technical knowledge can only accumulate and contribute to a better product, the same
unambiguous evolution does not apply to expected profits. Prototyping often evidences
problems in implementation. Marketing studies convey a combination of good and bad
news about consumer perceptions. Suppliers might be lost and financing dry up. These
issues can be addressed with additional expenses and further delay. But waiting is risky,
as a competitor might move first.

The conditions of these competitors are typically only imperfectly known to each other.
First, a firm does not observe the private technological achievements of opponents. Sec-
ond, even for shocks that are publicly observed, as when new regulatory standards are
applied to the industry, a given firm does not know how badly compromised the specific
designs of competitors are. Moreover, the final decision to produce and market a product
depends on several other financial assessments which are, at best, imperfectly anticipated
by opponents, such as projections of the marginal impact of the new product on previous
business lines.

We study this situation by extending the continuous-time real option framework. Our
model features both competition and incomplete information. Each player is privately
informed about the evolution of his or her expected payoffs. He or she also continuously
faces the choice between exercising the option (entry) or delaying this decision. The benefit
of delay originates from increments to expected profits, which involve some randomness.1

In addition to deferred revenues, the cost of delay includes the possibility that an opponent
might enter the market first and wipe out the player’s profit opportunities. Beliefs about
the likelihood of an opponent’s entry in the future are central determinants of optimal
exercise strategies.

Our main results are the following. First, we characterize the class of prior beliefs
for which a stationary equilibrium exists. For each prior within this class, we show

1See Dixit and Pindyck (1994) for a canonical reference.
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the associated stationary equilibrium is unique and explicitly construct it. Moreover, a
particular, canonical prior leads to the stationary equilibrium with the highest sustainable
intensity of competition. We provide an explicit formula for this maximal equilibrium
intensity in terms of primitives, namely the drift and volatility of the each opponent’s
expected payoff of entry.

Second, we track the evolution of beliefs about opponent’s states for priors that lead to
non-stationary equilibria and provide a partial analytical characterization of these equi-
libria. In particular, we give conditions for convergence toward the stationary equilibrium
of the game associated with the canonical prior. The analytic methods we use to obtain
these results are likely to be of interest beyond competitive real options.

Last, we compute non-stationary equilibria. The algorithm we develop for this pur-
pose jointly iterates on the forward-looking differential equations that characterize value
functions and a backward-looking integral equations for beliefs. This approach allows the
study of asymmetric competition and comparative dynamics across different industries,
but it can also be useful in other contexts. In our setting, we illustrate how meaningful
changes in the competitive environment, such as providing a firm with an initial advantage,
have both mechanical effects (that firm is closer to any exercise threshold) and strategic
ones (opponents initially see stronger competition and respond more aggressively).

The strategic effects vary over time, often non-monotonically. The intuition is that if
one’s opponent is more aggressive in the initial months, one should respond more aggres-
sively during that period because the risk of preemption is higher; however, once that
initial phase passes without any entry, this constitutes evidence that the opponent was
never in a particularly strong position. As such, competition weakens. Transitions can
be extremely long-lived and have meaningful effects on firm value and optimal strategies.
We conclude that accounting for the time varying nature of competition can be important
for applied researchers and financial managers alike.

To introduce some of the main ideas in this paper, we start with an important particular
case of the model. Two symmetric players compete in a race to develop a product and
first enter a market. We seek to construct a symmetric stationary equilibrium. In the
recursive formulation below, two objects are key for the equilibrium characterization: the
value function and the beliefs about opponent’s conditions.

For clarity, we look at the problem from the perspective of Player 1, who does not
observe the actual level of development of Player 2 and only holds a prior F about it.
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At the same time, Player 1 privately observes the evolution of his or her own expected
profitability, summarized by a payoff state X1(t), and discounts the future at a rate r > 0.
The cost of the product’s introduction into the market is K > 0, so that Xn(t) − K is
the net payoff from exercise at time t, for n = 1, 2. If Player 2 enters the market first,
the game ends and Player 1 obtains a payoff of zero. This winner-take-all feature of the
game simplifies the exposition.

The state Xn(t) follows
dXn(t) = µdt+ σdZn(t),

where Zn(t) for n = 1, 2 are two standard independent Brownian motions. We assume
that µ > 0, focusing on the case in which longer product development processes generate,
on average, higher profits. Actual increments to profitability, however, are random and
can be negative, with σ > 0 representing their volatility.

In a stationary equilibrium, Player 1 conjectures a constant defeat rate, λ ≥ 0. A
simple extension of well-known results2 implies that the value function, V (x), satisfies the
following stationary Hamilton-Jacobi-Bellman (HJB) equation:

(1) rV (x) = max
{
µ
dV (x)
dx

+ 1
2σ

2d
2V (x)
dx2 − λV (x), r (x−K)

}
.

The maximization above is between continuation or immediate exercise, in this order.
The evolution of the continuation value is the combination of the instantaneous determin-
istic product improvement, uncertain innovations to profitability, and the possible arrival
of a defeat.

The solution features a constant threshold, β > K, so that exercise is optimal if and
only if X1(t) ≥ β. 3

Static net present value (NPV) maximization would lead to investment wheneverX1(t) ≥
K. The optimal threshold β displays a positive wedge relative to this static criterion, due
to the option value of delayed entry. The defeat and the discount rates play analogous
roles: an increase in either decreases the wedge by the same amount. This is consistent
with a literature devoted to investment practitioners that suggests the use of an increased

2See Dixit and Pindyck, 1994; Mcdonald and Siegel, 1986. For a recent and formal treatment of one-
dimensional stochastic control and stopping problems in economics, see Strulovici and Szydlowski (2015).
3This threshold satisfies β = K + 1/ξ,where ξ = σ−2

(√
µ2 + 2σ2 (r + λ)− µ

)
is the positive root asso-

ciated with the characteristic polynomial of Equation 1 when continuation is optimal.
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discount rate to account for competition.4 By varying λ from zero to infinity, one can span
degrees of competition between monopoly and full profit dissipation. One of this paper’s
contributions is to offer a game-theoretic foundation for that rate. Another contribution
is to show that optimal exercise thresholds, even non-stationary ones, are bounded by the
monopolist’s and zero-NPV policies.

In equilibrium, exercise thresholds and perceived defeat rates must be mutually consis-
tent. In particular, in a stationary equilibrium, the belief distribution about Player 2’s
payoff state needs to satisfy

(2) −µdF (x)
dx

+ 1
2σ

2d
2F (x)
dx2 + λF (x) = 0,

with support in (−∞, β) and boundary conditions F (β) = 1 and dF (x) /dx|x=β = 0.5

We derive this modified Kolmogorov forward equation for (stationary) conditional be-
liefs in Section 3.2 and offer for now only a preview of its intuition. The interpretation of
the first two terms is standard: a positive drift makes it less likely that the state is below
any given value as time passes, while the diffusion component leads to a smoothing of the
distribution over time. The novelty lies the last term, that originates from conditioning
on the absence of defeat. As time passes and Player 2 is expected to cross the exercise
threshold at a rate λ, the conditional probability of his or her state being below any
x < β (given that defeat was not observed) increases proportionately at a that same rate.
Intuitively, the absence of defeat is good news for Player 1: had Player 2 been close to
the threshold, he or she would have been relatively more likely to enter the market. In
this game, survival is indicative of a relatively weaker opponent than previously thought.

We show that Equation 2 admits a single (prior) probability distribution as a solution
for any λ ∈ (0, λ∗], where λ∗ ≡ 1

2
µ2

σ2 is the highest level of perceived competition that can
occur in a stationary equilibrium. A key consequence is: For each λ ∈ (0, λ∗], the game
in which the prior marginal distribution about the opponent’s condition satisfy Equation
2 has a stationary equilibrium with the value function determined by Equation 1. Also,
if the prior marginal distribution does not satisfy Equation 2 for any λ ∈ (0, λ∗], no
stationary equilibrium exists and a more general approach is required.

4It is also well known that the wedge increases in the volatility of the state (Dixit and Pindyck, 1994).
For an application featuring an ad hoc discount rate increase, see Trigeorgis (1995, Chapter 9).
5Any mass above β would imply a positive probability of instantaneous exercise, which is inconsistent
with stationarity. The second condition originates from a vanishing density at an absorbing boundary.
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In the rest of the paper, we go beyond the stationary case and lay out a flexible model,
which allows for multiple asymmetric players and arbitrary priors.

2. Model

2.1. Description of the game. Time is continuous and the horizon is infinite. Players
are indexed by n ∈ N ≡ {1, 2, ..., N}. The discount rate is r > 0 for every player.
Each player, n ∈ N , privately observes the evolution of a position Xn(t), where Xn ≡
{Xn(t)}t≥0 is a stochastic process with initial condition Xn (0) = x0

n. We denote by F 0

the (common) prior distribution over the player’s initial conditions. We assume that
initial conditions are independent across players and denote by F 0

n the prior marginal
distribution for Player n. The evolution of the stochastic process Xn satisfies

dXn(t) = µndt+ σndZn(t),

where Zn is a Wiener process and µn > 0 and σn > 0 represent constant player-specific
drift and volatility. The processes Z1, ..., ZN are independent and all parameters are
common knowledge.6

The positions X1(t), ..., XN(t) represent the development state of different projects,
measured as a gross expected payoff from current exercise. Their evolution is private
information, so each player knows his or her own progress, but does not know the progress
of the opponents. While we are restricting attention to stochastic increments in the states
that are independent across agents, the drift term can incorporate common deterministic
trends in the exercise payoffs.

Each player decides at every instant whether to exercise the option or wait for more
information. If Player n exercises when Xn(t) = xn, the game ends at time t and the
player obtains a payoff of xn−Kn, while the opponents get 0. We assume that the exercise
cost is positive, common knowledge and that there is no running cost for staying in the
game, so that waiting is optimal whenever xn is sufficiently low. To prevent situations
in which the game ends at date t = 0 with probability one, we introduce the following
condition, which we assume throughout the paper.

6We choose an arithmetic Brownian process for both analytical tractability and the assumption that each
firm’s research and development (R&D) efforts generate a constant flow of expected profit innovations.
The geometric Brownian case requires a simple change of variables and is discussed in Section C.1 of
the appendix. Under that specification, profit innovations from further delay are proportional to current
expected profits, an assumption that we find less appealing for R&D applications.
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Assumption. For all n ∈N , the prior marginal distribution satisfies

lim
xn↑Kn

F 0
n(xn) > 0.

2.2. Information, strategies, and payoffs. For each n ∈ N , let Fn ≡ {Fn(t)}t≥0 be
the filtration generated by Xn. A strategy for Player n is a Fn−stopping time, generically
denoted τn. We allow stopping times to be infinite when a player never exercises (receiving
a payoff of 0).

Let F be the product filtration jointly generated by X1, ..., XN . Notice that F contains
more information than observed by each player individually. The game ends as soon
as any player exercises, that is, at the F−stopping time minn∈N τn. Player n can only
observe the passage of time, the absence of any opponent’s exercise, and the evolution
of their own position {Xn(t)}t≥0. If a strategy for Player n is the first-passage time of
Xn through a lower-semicontinuous threshold, we call it a threshold strategy. We say
that τn is a stationary strategy if it is a time-invariant threshold strategy and satisfies
Pr {τn = 0} = 0. That is, stationary strategies are first-passage times through some
constant threshold.

Let Sn and Tn be the set of strategies and threshold strategies, respectively, for Player
n. We also define τ[−n] ≡ minm∈N\{n} τm, the minimal stopping time among Player n’s
opponents. As usual, the subscript −n denotes strategy or strategy set profiles for the
opponents of Player n. Player n’s expected discounted payoff at time t ≥ 0 of using
strategy τn ≥ t when opponents use τ−n is given by

Jn(τn, τ−n|t) ≡


E
{
e−r(τn−t)1τn<τ[−n] (Xn (τn)−Kn)

∣∣∣Fn(t), τ[−n] ≥ t
}

if τ[−n] ≥ t,

0 if τ[−n] < t.

There are three features of the expected discounted payoffs worthy of attention. First,
if two players ever exercise at exactly the same time, they both collect a payoff of zero.
The implicit assumption is that Xn (τn) − Kn represents the payoff that a monopolist
would obtain and any other arrangement, with multiple players competing to sell their
products, leads to complete dissipation of market power.

Second, notice that, besides the information from the filtration generated by Xn, Player
n at any particular moment also knows whether the game has not yet ended with her
defeat.
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Third, notice that, for any profile of strategies of opponents, the value process

sup
τn∈Sn|τn≥t

Jn(τn, τ−n|t)

is a Markov process with a private state that contains both Xn (t) and the knowledge of
whether any of the opponents has stopped before the current date t.

2.3. Equilibrium. The following definition introduces the equilibrium notions employed
in the rest of the paper.

Definition 1. A (Nash) equilibrium is a strategy profile τ̂ = (τ̂1, ..., τ̂N) ∈ ∏N
n=1 Sn such

that Jn(τ̂n, τ̂−n|0) ≥ Jn(τn, τ̂−n|0) for all τn ∈ Sn and n ∈ N . A stationary equilibrium is
an equilibrium in stationary strategies.

In equilibrium, each strategy τ̂n maximizes the expected discounted payoffs of Player
n, holding strategies τ̂−n fixed for all other players.

Note that, from the viewpoint of Player n, the behavior of all opponents is effectively
summarized by the distribution of the time of Player n’s defeat, which is determined by
τ[−n]. Moreover, the optimal stopping problem arising from any such distribution is solved
by a threshold strategy. This means that threshold strategies are enough for each player
to best respond, even to opponents playing in arbitrary ways. More formally, despite the
strict inclusion Tn ⊂ Sn, we have

max
τn∈Tn

Jn(τn, τ−n|0) = sup
τn∈Sn

Jn(τn, τ−n|0)

for all τ−n ∈ S−n and n ∈ N .7 The bottom line is that, for the purposes of equilibrium
analysis, we can restrict attention to threshold strategies without loss of generality.

2.4. A recursive representation. Fix an equilibrium τ̂ ≡ (τ̂1, ..., τ̂N). Let Vn(xn, t) be
the equilibrium payoff of Player n at state Xn(t) = xn conditional on the knowledge that
opponents have not stopped before t ≥ 0, that is,

(3) Vn(xn, t) ≡ sup
τn∈Sn|τn≥t

E
{
e−r(τn−t)1τn<τ̂[−n] (Xn(τn)−Kn)

∣∣∣Xn(t) = xn, τ̂[−n] ≥ t
}
.

Standard arguments show that Vn(xn, t) is increasing and convex in xn. Moreover, since
the option to stop is always available, the value function must satisfy Vn(xn, t) ≥ xn−Kn

7For details, please refer to Section S4 (Lemma 31, in particular) in the supplementary material.
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for all xn ∈ R. These properties imply that the value function induces an optimal exercise
threshold

(4) βn(t) ≡ sup {xn ∈ R|Vn(xn, t) > xn −Kn} .

For notation simplicity, let us leave implicit the dependence on the state (xn, t) and write
Vn to represent Vn(xn, t). Whenever the distribution of τ̂[−n] is absolutely continuous,
its hazard rate, λn, defines the equilibrium defeat rate of Player n and the associated
Hamilton-Jacobi-Bellman (HJB) equation is

(5) rVn = max
{
µn
∂Vn
∂xn

+ 1
2σ

2
n

∂2Vn
∂x2

n

+ ∂Vn
∂t

+ λn(t) (0− Vn) , r(xn −Kn)
}
.

In other words, λn(t) is the arrival rate of the end of the game induced by the equilibrium
exercise from any of the opponents of Player n, conditional on the game not having ended.
The first term inside the maximization is the value of continuation and the second one
represents the value from current exercise. On the former, one can notice, in order, the
effects from the drift in the process Xn(t), the volatility, the time dependence, and the
possibility of the game ending with defeat, which induces a instantaneous jump to zero in
the continuation value. Notice that all the information about opponents that is necessary
to solve one’s optimization problem is summarized by the function λn. Also, the time
dependence of the value function originates exclusively from the defeat rate: whenever λn
is constant, the value function is stationary.

Note that, in order for the HJB to be well-defined in a classic sense, the value function
Vn must be smooth enough. If these conditions hold, the HJB equation is solved as a
free-boundary problem of the partial differential equation (PDE)

(6) [r + λn(t)]Vn = µn
∂Vn
∂x

+ 1
2σ

2
n

∂2Vn
∂x2 + ∂Vn

∂t
,

on the region xn < βn(t), with free-boundary conditions given by

(7) Vn(βn(t), t) = βn(t)−Kn

and

(8) ∂Vn(xn, t)
∂xn

∣∣∣∣∣
xn=βn(t)

= 1,

where βn(t) is a free-boundary, which might depend on t. Equation 7 represents the value-
matching condition at the boundary, and Equation 8 is the smooth-pasting condition. To

9



provide a formal representation result, let us say that a value-threshold pair (Vn, βn) is
smooth if Vn : R × [0,∞) → R and βn : [0,∞) → R are continuously differentiable
functions everywhere, and Vn is twice continuously differentiable in space whenever xn 6=
βn(t). Then, we have the following:

Proposition 1. For each n ∈N , let (Vn, βn) be a smooth value-threshold pair and let τ̂n
be a Fn−stopping time.

i) Suppose that (τ̂1, ..., τ̂N) is an equilibrium that induces (Vn, βn)n∈N through Equa-
tions 3 and 4. Then, for each n ∈ N , the distribution of τ̂[−n] has a continuous
hazard rate λn, and (Vn, βn) solves the free-boundary problem posed by Equations
6, 7, and 8 given λn.

ii) Suppose that τ̂n is the first-passage time of Xn through βn. Then, the random
time τ̂[−n] has a continuous hazard rate λn. Moreover, if the pair (Vn, βn) solves the
free-boundary problem posed by Equations 6, 7, and 8 given λn, for each n ∈N ,
then (τ̂1, ..., τ̂N) is an equilibrium.

Note that Proposition 1 only concerns equilibria displaying enough smoothness. As we
will see in Section 3.4, the class of such equilibria includes all stationary equilibria. It
is currently an open question whether there exists an equilibrium that induces a value-
threshold pair that fails to be smooth. The key step to establish the second part of the
proposition is the verification argument provided by Lemma 2 in the appendix.

3. Main Results

3.1. Bounds on exercise thresholds. It is natural to expect the optimal behavior of a
competitive player to lie somewhere between the behavior of a monopolist, who does not
face the threat of any possible preemption, and the behavior under the most extreme form
of competition, in which any positive NPV option is instantly exercised. These intuitive
bounds imply direct restrictions on equilibrium exercise thresholds and exercise times.
Proposition 2 below establishes these bounds in any equilibrium in threshold strategies
by eliminating dominated strategies.

To formally state the result, define individual specific constant thresholds β
n
≡ Kn and

βn ≡ Kn + 1/ξn, where
ξn ≡

1
σ2
n

(√
µ2
n + 2σ2

nr − µn
)
.
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Here, β
n
represents the perfectly competitive zero NPV threshold and βn the stationary

threshold that prevails for the optimal exercise of a monopolist. The number ξn is the
positive root of (1/2)σ2

nξ
2 + µnξ − r = 0, the characteristic polynomial associated with

the ordinary differential equation that describes the monopolist’s value function in the
continuation region.

Using these thresholds, we define stopping times τn ≡ inf
{
t > 0

∣∣∣Xn(t) ≥ β
n

}
and

τn ≡ inf
{
t > 0

∣∣∣Xn(t) ≥ βn
}
, which represent the random times for the first crossing of

the lowest (most aggressive) zero-NPV threshold and the (least aggressive) monopolistic
threshold. The next result shows that the ranking of the two constant thresholds is
translated to these stopping times and, more importantly, that these stopping times bound
threshold strategies.

Proposition 2. Let (τ̂1, ..., τ̂N) be an equilibrium with associated exercise thresholds (β1, ..., βN),
following Equation 4. Then, τn ≤ τ̂n ≤ τn and β

n
≤ βn ≤ βn for every player n ∈N .

Proposition 2 is important for constraining possible equilibrium exercise thresholds and
stopping times. It is especially useful in describing the long-run properties of the game, as
the limited amount of rationality imposed by the bounds above is sufficient to pin down
the asymptotic behavior of the rate of arrival of defeat. In fact, we provide a convergence
result in Section 3.5. However, before focusing on the limit, we study how conditional
belief distributions and the dynamics of competition evolve in this setting.

3.2. Equilibrium exercise densities and belief evolution. To characterize equilibria,
we first resort to an intermediate result that describes the evolution of a Brownian motion
density when subject to a given absorbing boundary, βn. This result is directly related to
the distribution of players’ stopping times and is important for characterizing equilibrium
beliefs about conditions of opponents and the likelihood of their exercise.

We denote the density of the current state for paths that have not previously hit the
boundary by fn : R × R+ → R+, so that fn(xn, t) is the density at payoff state xn and
time t. The evolution of this density is described by the following standard Kolmogorov
forward equation

(9) ∂fn
∂t

= −µn
∂fn
∂xn

+ 1
2σ

2
n

∂2fn
∂x2

n

, for xn < βn(t).

On the left-hand side, we have the time evolution of the density at a state (xn, t).
The first term on the right-hand side describes how a drift imposes a lateral shift in the
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density: Whenever ∂fn/∂xn > 0 (∂fn/∂xn < 0), a given state xn loses (gains) density in
proportion to the drift µn. The second term originates from the volatility in process Xn,
which diffuses mass over neighboring payoff states as time passes.

Importantly, this density does not integrate to one, but only to the probability that the
state has not yet crossed the boundary βn up to time t. That is,

βn(t)ˆ
−∞

fn(xn, t)dxn = Pr {Xn(s) < βn(s), ∀s ≤ t} = 1− Γn(t),

where Γn(t) ≡ Pr {∃s ≤ t, Xn(s) ≥ βn(s)} is the cumulative distribution of the exercise
by Player n, that is, the distribution of the first-passage time of Xn through the boundary
βn. Additionally, let γn be the exercise density of Player n (i.e. the density of the first-
arrival time of the process Xn at the boundary βn). It is well-known that this density
exists whenever the boundary is continuously differentiable.8

Agents share independent common priors over their initial conditions. Let f 0
n(xn) de-

note the prior’s generalized density over the starting point of player n (accommodating
any mass points using Dirac’s delta function). This density serves as the initial condition
for Equation 9, so

(10) fn(xn, 0) = f 0
n(xn).

Given that βn works as an absorbing boundary, the density vanishes at that boundary,
implying the following boundary condition for the PDE in Equation 9:

(11) fn(βn(t), t) = 0.

We use Equations 9 through 11 to characterize the probability distribution of the state,
Xn(t), and the exercise density γn. Indeed, Equations 9 and 11 imply that the following
auxiliary condition is satisfied9 at the boundary,

(12) γn(t) = −1
2σ

2
n

∂fn(βn(t), t)
∂xn

.

8See Lehmann (2002) for general results relating the degree of smoothness of the absorbing boundary,
βn, with that of the absorbing density, γn.
9A heuristic derivation is the following. Integrate Equation 9 over xn in the region below the boundary.
Then use Fn(βn(t), t) = 1− Γn(t) and fn(βn(t), t) = 0 to obtain

d (1− Γn(t))
dt

= 1
2σ

2
n

∂fn(βn(t), t)
∂xn

.
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This shows that the instantaneous absorption intensity at time t is governed by the
strength of the diffusion effect and also by the slope of the density at the boundary. The
intuition for this is the following: The more mass is present near the boundary (which
increases with the slope of the density), the more mass hits it in the immediate future;
also, the more randomness (higher σ2

n) in the environment, the more movement this mass
experiences and the larger is the induced absorption. In Appendix B.1, we obtain and
interpret an integral representation to this backward-looking system. We use it later in
the algorithm that computes non-stationary equilibria in Section 4.

Before proceeding, let us use this system for characterizing the evolution of beliefs about
a player’s state, conditional on absence of exercise by this player. These conditional beliefs
are central to the construction of stationary equilibria of Section 3.4.

For that purpose, notice first that, while opponents do not observe the private informa-
tion of Player n, they learn something from the absence of previous exercise. For instance,
had a path ever been close to the boundary in the past, it would have been likely to cross
it. So, the absence of a previous defeat conveys information about the relative likelihood
of different paths and, consequently, about current positions.

Formally, let f̂n : R× R+ → R+, defined as

f̂n(xn, t) ≡
fn(xn, t)
1− Γn(t) ,

represent the conditional belief density that opponents hold over Player n’s position,
Xn(t) ≤ βn(t). We call F̂n(·, t) its cumulative distribution function.

From the evolution of the unconditional belief distribution (Equation 10 and 11), it
follows that

(13) ∂f̂n
∂t

= −µn
∂f̂n
∂xn

+ 1
2σ

2
n

∂2f̂n
∂x2

n

+ ηn(t)f̂n, for xn < βn(t),

with boundary condition f̂n(βn(t), t) = 0 and probability preservation condition
´ βn(t)
−∞ f̂n(x, t)dx =

1.
Here, the rescaling coefficient ηn(t) is the instantaneous arrival rate of Player n’s state

to his or her boundary βn, the exercise rate of that player, that can be written as

(14) ηn(t) ≡ γn(t)
1− Γn(t) = −1

2σ
2
n

∂f̂n(βn(t), t)
∂xn

.
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Equation 14 illustrates an important linkage between the conditional belief distribution
and the exercise rate.10 The behavior of this conditional belief near the boundary explains
the perceived threat of entry. The intuition for the effects of the density’s slope and
the volatility of the innovations are the same as before. Also importantly, while the
unconditional exercise density, γn, tends to vanish as time passes, we show in Section 3.5
that ηn tends to a strictly positive limit. As a consequence, perceived competition does
not vanish.

The evolution of these conditional beliefs is common knowledge. At any moment in
time, as long as no option has been exercised, one can define a new game, starting from
a common prior defined over initial positions, {x0

n}n∈N , given by
{
F 0
n = F̂n (·, t)

}
n∈N

.
The equilibrium of this game coincides with the continuation equilibrium of the original
game. That is, the environment is time homogeneous once these conditional beliefs are
explicitly accounted for. We refrain from this time-homogeneous formulation, since it
requires an infinite dimensional state-space encoding players’ beliefs. We work instead
with the non-stationary problem, by either bounding or fully characterizing the effect of
time on player’s payoffs and strategies.

In the next section, we relate the local intensity of defeat every player induces on his or
her opponents back to the overall intensity of competition perceived by each player, which
is the single input necessary for the characterization of the value function and optimal
exercise strategies.

3.3. Defeat rates and optimal policy. A key ingredient in the decision problem of
Player n is the perceived arrival rate of his or her defeat. In equilibrium, this perception
must coincide with the conditional arrival rate of the end of the game effectively induced
by the opponents of Player n. Note that, since the game is over the first time a player
exercises an option, we need to find the distribution of the earliest stopping time among the
opponents of Player n, that is, τ̂[−n] ≡ minm6=n τ̂m. This random variable is characterized
by the cumulative distribution function

G[−n](t) ≡ Pr
{
τ̂[−n] ≤ t

}
= 1−

∏
m 6=n

(1− Γm(t)) ,

with the associated density function given by g[−n](t). The equilibrium arrival rate to the
defeat of Player n, which is essential for the description of Player n’s HJB equation, is

10Exactly as in Proposition 6, we can solve 13 and obtain an integral representation for the conditional
belief and the associated arrival rate to the boundary.
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λn(t) ≡ g[−n](t)
1−G[−n](t)

.

Given independence of the innovations across opponents, the defeat rate of Player n is
the sum of the hazard rates associated with the conditional distributions of the exercise
times of Player n’s opponents, that is,11

(15) λn(t) =
∑
m6=n

ηm(t).

In loose terms, keeping strategies fixed, if one doubles the number of players, the defeat
rate of any of those would double. In equilibrium, however, players’ strategies respond to
a potential increased competition. Section 3.5 shows that despite that strategic response,
a linearity of the defeat rate in the total number of opponents is still true in the limit.

In Appendix B.2, we provide integral expressions for the threshold and the value func-
tion. In these formulations, all influence from opponents on each individual problem is
summarized by an effective discount factor, which increments the discount rate (r) with
the equilibrium defeat rate, following equations 14 and 15.

3.4. Stationary equilibria. In this section, we fully characterize the set of games that
admit a stationary equilibrium. As we shall see, the existence of a stationary equilibrium
requires very specific priors, which we explicitly parameterize using the exercise rates of
the players.

Moreover, we prove uniqueness: Each given game (with a fixed prior) may admit at
most one stationary equilibrium. The combination of these results allows us to establish a
one-to-one correspondence between the set of stationary equilibria (across different games
with appropriately parametrized priors) and the set of equilibrium exercise rate profiles.

Proposition 3 below, offers the existence result.

Proposition 3. For each vector η ∈ RN , satisfying ηn ∈
(
0, 1

2
µ2
n

σ2
n

]
for all n ∈ N , there

exists a prior F 0 and a strategy profile τ = (τ1, ...τN) such that:

i) The profile τ is a stationary equilibrium of the game under the prior F 0.
ii) For each n ∈N , ηnis the (constant) hazard rate of the distribution of τn.

The proof of the result is constructive and calls attention to the shape of the prior, F 0,
that supports this stationary equilibrium and the strategy profile, τ , that implements it.

11Notice that λn(t) = − d
dt ln

(
1−G[−n](t)

)
= − d

dt ln
(∏

m6=n (1− Γm(t))
)

=
∑
m 6=n

(
γm(t)

1−Γm(t)

)
.
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First, given constant exercise rates and Equation 15, defeat rates are also constant and
satisfy

(16) λn (t) = λn ≡
∑
m 6=n

ηm.

Second, with constant defeat rates, each player faces a textbook optimal stopping prob-
lem under a modified discount rate of r+ λn. The optimal exercise threshold of Player n
ensures value matching and smooth pasting and is given by

(17) βn(t) = βn ≡ Kn + 1
ξn
,

while the associated value function is

(18) Vn (xn, t) = V n (xn) ≡


xn −Kn , for xn ≥ βn

e
ξn(xn−βn)

ξn
, for xn < βn

,

where ξn ≡
(√

µ2
n + 2σ2

n

(
r + λn

)
− µn

)
/σ2

n.12

Constant exercise rates impose that the cumulative distribution of exercise is of the
particular form Γn (t) = 1−e−ηnt. In the stationary equilibrium, Γn is also the distribution
of the first-passage time of Player n’s state through the constant threshold from Equation
17. These two pieces together impose restrictions on F 0

n and lead to the following question:
given the exercise threshold βn, is there a prior marginal distribution over the initial state
of Player n that sustains the particular first-passage distribution Γn? We provide an
explicit positive answer in the following lemma.

Lemma 1. For each ηn ∈
(
0, 1

2
µ2
n

σ2
n

]
and βn there exists a unique prior marginal distribution

F 0
n (over the initial state Xn (0)) that induces 1 − Γn (t) = e−ηnt. The support of F 0

n is
(−∞, βn], with its density given by

(19) f 0
n (x) = fn (x) =


2ηne

−µn(βn−x)
σ2
n

sinh
(

(βn−x)
√

µ2
n−2ηnσ2

n

σ2
n

)
√
µ2
n−2ηnσ2

n

, if ηn < 1
2
µ2
n

σ2
n
,

2ηne
−µn(βn−x)

σ2
n

βn−x
σ2
n

, if ηn = 1
2
µ2
n

σ2
n

12It is easy to check that the (stationary) HJB equation, rV n = µn
dV n
dxn

+ 1
2σ

2
n
d2V n
dx2
n
− λnV n, holds

in the continuation region and ξn the single positive root of its characteristic polynomial. Since V n
is continuously differentiable, by standard verification arguments (or the more general Proposition 1),
Equation 18 is the value function for Player n.
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and is the unique solution of the differential equation

(20) 0 = −µn
dfn
dxn

+ 1
2σ

2
n

d2fn
dx2

n

+ ηnfn,

that satisfies the boundary condition fn
(
βn
)

= 0 and the probability preservation con-

straint
´ βn
−∞ fn (x) dx = 1.

Lemma 1 consists of two parts. Its first part shows that there is a unique distribution
that ensures a given constant exercise rate against the constant threshold. Furthermore,
its density is given in Equation 19.

The second part proves a modified Kolmogorov forward equation that has a straight-
forward economic interpretation and can be useful in other contexts. Equation 20 shows
that the distribution characterized in Equation 19, for a given exercise rate ηn, is also
the stationary solution of the evolution of conditional beliefs (Eq. 13, holding that rate
fixed).

There are two consequences. First, the shape of the distribution F 0
n is such that the

uninformed opponents expect exercise to occur exactly at the constant rate ηn. Second,
after any interval of time for which exercise does not occur, the posterior opponents hold
over the private state of Player n is identical to the prior. Equation 20 offers an alternative
characterization of F 0

n that sustains the constant exercise rate: One can solve the ordinary
differential equation in Eq. 20, with the appropriate boundary conditions, and obtain the
density of that unique distribution.

So far, our characterization of games admitting stationary equilibria is partial: Given
an admissible profile of exercise rates, we can specify a game and a stationary equilibrium
of this game that implements the prescribed rates. To obtain a complete characterization,
we need to determine whether there are any games that have stationary equilibria with
exercise rates outside the range studied. Moreover, ruling out multiple stationary equilib-
ria (for a given game) can also strengthen the characterization. The following proposition
accomplishes both tasks.

Proposition 4. Suppose that the strategy profile τ is a stationary equilibrium of a game
(with a fixed prior F 0). Then,

i) τ is the unique stationary equilibrium of the game.
ii) The hazard rate of the distribution of each τn is a constant ηn ∈

(
0, 1

2
µ2
n

σ2
n

]
.

iii) Each defeat rate is a constant λn, given by Equation 16 for η[−n] above.
17



iv) Each exercise threshold, βn, and value function, V n, follows Equations 17 and 18,
for λn above.

v) Each prior marginal F 0
n admits density in Eq. 19 with ηn and βn given above.

Proposition 4 concludes our characterization. There is a limited range of exercise rates
that can occur in a stationary equilibrium of some game. Additionally, stationarity im-
poses a severe consistency requirement on priors. Since priors are predetermined and part
of the description of any game, only a narrow set of games admits a stationary equilibrium.
Uniqueness of the stationary equilibrium in any particular game is ensured.

It is possible to take instead an alternative perspective on the previous results. Consider
an outside observer who knows all the environment of the game, except the prior. From
this observer’s perspective, the parameters η can be used to index exercise thresholds in
Equation 17, then priors with Equation 19 and, as a consequence, fully describe a family
of games and their associated stationary equilibria. Without knowledge of the prior,
multiple equilibrium exercise rates can be rationalized for each player.

In this sense, the strongest prediction this observer can make is the existence of an
upper bound on possible stationary exercise rates of Player n, given by η∗n = 1

2
µ2
n

σ2
n
. We

call these maximal rates canonical. In the next section, we show that the long-run sig-
nificance of canonical exercise rates extends beyond stationary equilibria: They are the
limit equilibrium exercise rates of a very large and economically relevant set of games.

3.5. The long-run equilibrium behavior. In this section, we analytically characterize
the long-run properties of equilibrium dynamics. Our main result shows that, under a
differentiability assumption, equilibrium behavior and underlying beliefs converge toward
a very particular steady state.

We say that the distribution of a random variable is canonical (for Player n) if it
satisfies Equation 19 for the canonical rate (η∗n = 1

2
µ2
n

σ2
n
) and the location β∗n that charac-

terizes the best reply to opponents’ canonical exercise rates (according to Eqs. 16 and
17). We denote this distribution by F ∗n . The canonical prior F ∗ is the joint distribution
of the N independent random variables defined in this way, each describing the initial
position of a player. Let also {V ∗n , β∗n, λ∗n}n∈N denote the recursive representation of the
unique stationary equilibrium associated with this prior. Notice that among all station-
ary equilibria (across different games, induced by the particular priors characterized in
the previous section), this equilibrium features the highest possible exercise rates. Also,
among all distributions that are consistent with stationary beliefs (i.e., distributions that
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satisfy that Eq. 19 for some ηn ∈ (0, η∗n]) the canonical distribution for Player n has the
fastest decay in its left tail.

In what follows, we define a distribution H:R → [0, 1] to have fast decay (for Player
n), if ˆ 0

−∞
e
µn
σ2
n
|x| |x|H (dx) < +∞.

Every distribution with a left tail that vanishes strictly faster than the canonical dis-
tribution (of Player n) satisfies this requirement. Important examples include degener-
ate distributions representing mass points (i.e., a commonly known initial conditional
Xn (0)=x0

n), any distributions with bounded support, and normal distributions.
To obtain our main convergence result, we restrict the prior beliefs in the following way:

Assumption 1. For every n ∈N , the prior marginal distribution F 0
n is a (not necessarily

strict) convex combination of the canonical and some fast-decay distribution.

We also impose the following smoothness requirement on equilibrium defeat rates.

Assumption 2. For every n ∈ N , the defeat rate λn is continuously differentiable on
(0,+∞) with a uniformly bounded derivative.

This assumption is trivially satisfied for stationary equilibria. The simulations in the
next section suggest a wider validity. However, formally establishing sufficient smoothness
of the distribution of equilibrium stopping times or finding a weaker alternative are open
issues for future research.13

We are then able to provide an explicit description of asymptotic equilibrium behavior
in terms of the exogenous parameters of the model.

Proposition 5. Let {Vn, βn, λn}n∈N be a recursive representation of an equilibrium sat-
isfying Assumptions 1 and 2. Then, for every player n ∈N , we have

i) Values converge uniformly: limt→+∞ supx∈R |Vn(x, t)− V ∗n (x)|=0,
ii) Exercise thresholds converge: limt→+∞ βn(t) = β∗n,
iii) Defeat rates converge: limt→+∞ λn(t) = λ∗n,
iv) Conditional beliefs converge: limt→+∞ F̂n(x, t) = F ∗n(x) for all x ∈ R and n ∈N .

13On the one hand, the distribution of an equilibrium stopping time is continuous (result available upon
request). On the other hand, the key difficulty for a general smoothness proof, is that the best reply can
induce a distribution that fails that assumption. An example occurs when one of the opponents has an
exercise strategy with a discontinuous distribution (which is inconsistent with equilibrium).
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Proposition 5 establishes convergence and reveals the long-run determinants of equilib-
rium strategies and beliefs. It shows that, for a large set of priors, the importance of initial
conditions vanishes and the equilibrium of the game converges to the stationary equilib-
rium associated with the canonical prior. Importantly, given that conditional beliefs fully
summarize all public information about the past, we can say that their convergence is
driving the convergence of the exercise rates and value functions.14

Proposition 5 has three important consequences. First, it illustrates the particular
importance of the canonical prior. In the previous section, we characterized a large
family of games and their stationary equilibria. The priors that supported each of these
equilibria were all very particular and there was no guidance on their relative importance.
Proposition 5 shows that the canonical case is the attractor of a large class of economically
important games. This class plausibly exhausts all cases of interest for applied work, since
priors that do not satisfy Assumption 1 require large probabilities of extremely negative
initial conditions.

Second, numerical approaches to equilibrium characterization, as we implement in the
next section, typically require a finite grid and the use of an artificial boundary condition
after a sufficiently large horizon. Proposition 5 obtains the infinite horizon limit, which
offers a natural terminal condition for an approximation.15

Last, given that the steady state admits a closed form, we can establish the following
set of comparative statics.

Corollary 1. An increase in µn or a decrease in σn leads to:

i) A decrease in limit values for all opponents m ∈ N \ {n} and a corresponding
decrease in their optimal limit thresholds β∗m.

ii) A first-order stochastic dominance increase in the limit conditional beliefs about
position Xn(t).

iii) No change in the shape of limit beliefs about any Xm (t) for m 6= n, but a first-order
stochastic dominance decrease, due to the location change of β∗m.

iv) An increase in the limit arrival rate of the end of the game, with an increase in
the relative likelihood of exercise by player n.

14As discussed previously, conditional beliefs can be used as the public state in a time-independent
recursive representation of equilibria.
15The quality the numerical approximation depends on the choice of the artificial terminal horizon and
the speed of convergence. Our results in the next section illustrate the importance of the use of a long
horizon, as transitional dynamics are slow.
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Additionally, either an increase in µn or in σ2
n leads to an increase in player n’s own limit

value function and threshold, without any change in defeat rate.

Corollary 2. The inclusion of an opponent N+1, with payoff drift µN+1 > 0 and volatility
σN+1 leads to

i) A decrease in limit values for all players n ∈ {1, ..., N} and a corresponding de-
crease in their optimal limit thresholds.

ii) An increase in the limit hazard rate for the end of the game of 1
2

(
µN+1
σN+1

)2
.

Proposition 5 has consequences for the limit industry-wide limit dynamics. Consider, for
instance, an industry defined by fast innovation processes, represented by high µn for some
of the players. This industry becomes more competitive in the limit; effective discount
rates increase; and products are brought to market under lower profit expectations than
they would if concerns about competition were absent. As the value functions are forward
looking, that increased competition is also propagated toward the transition phase, as we
will study in the next section. A similar conclusion follows from an increase in the number
of opponents, identified in Corollary 2.

The consequences of increased volatility of a given player n are more subtle. Higher
volatility increases the option value of waiting, raising exercise thresholds and payoffs for
that player. The consequences over opponents tend to be ambiguous. In principle, payoff
innovation is less predictable. From the interior of the region in which player n is willing to
wait, larger volatility makes he or she more likely to obtain a large sudden improvement in
expected profits, leading to exercise. More formally, Equation 14 shows that for a given
conditional belief about the state of this player and boundary, exercise rates increase
when volatility increases. On the other hand, however, there are two forces. First, the
agent becomes less aggressive in exercise thresholds. Second, the belief updating process
changes. Absence of exercise informs opponents that high payoff states were unlikely, as
they could have easily led to the counterfactual end of competition. In the limit, the
dominant force is this, as more volatility decrease the stationary belief that opponents
hold about Player n’s position in a first-order stochastic dominance sense.

Indeed, increases in the uncertainty about payoff innovations tend to stir competition
in the short-run, while discouraging it the long-run. This is due to the offsetting nature
of the effects of the increased likelihood of breakthroughs, in one direction, dominating
in the short-run, and information updating about the state of opponents, in the opposing
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direction, which dominates in the long-run. We further extend this analysis and study
with additional dynamic aspects of competition in the next section.

4. Simulations

In this section, we present results from simulations and comparative dynamics. First,
we compute the equilibrium for a simple symmetric two-player set-up. We normalize the
payoff units to set the exercise cost to unity, that is, Kn = 1, and the initial condition
to x0

n = 0 for all players. To provide a clear meaning to time, we set the reference time
unit to a year and the interest rate r = 2%. We then choose the values of the drift and
volatility parameters of the stochastic payoff process to match two moment conditions.
The first condition is that in half of the possible histories, the firm should cross the zero
NPV threshold (Xn(t) = Kn) within the first two years. The second condition is that
out of the remaining histories, half should cross it within the next four years. We obtain
µn = 0.04 and σn = 0.96.16
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Figure 1. Baseline Equilibrium Characterization. Symmetric parameters set to
Kn = 1, x0

n = 0, µn = 0.04, and σn = 0.96. The arrows and dotted lines mark
asymptotic limits.

16The evolution of the logarithm of the value function, which is comparable to an asset return, has an
exposure to innovations of ∂Vn(x,t)/∂x

Vn(x,t) σndZn(t). Near the exercise threshold, that value is approximately
1
4σn.
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Figure 1 plots the symmetric equilibrium exercise thresholds and the exercise rates.
The dotted lines indicate the asymptotic limit of the variable on display, while the arrow
on the right-hand axis marks the distance to that limit at a long eighty-year horizon. A
few features are noticeable.

First, both objects display economically meaningful dynamics. At its peak, competition
induces a defeat rate of almost 2.5%, which means that the effective instantaneous discount
rate can be more than doubled relative to the baseline case in which competition is
absent. Notice that this magnitude should get significantly larger in the presence of more
opponents, a fact we explore soon. The limit value of the defeat rate is to the order
of 10−3, so a pure study of the steady state would have concluded that competition is
irrelevant quantitatively. While this depends on the drift and volatility of the calibration,
it holds true for any choice that delivers projects with a significant probability of not
succeeding within a window of 5 or 10 years.

Second, as the value function is forward-looking, the exercise threshold anticipates
changes in the defeat rate, hitting its most aggressive point of approximately βn(t) = 4.8
before the defeat rate reaches its peak. It then recedes toward the steady-state value
of limt→+∞ β(t) = 6.75. For these baseline parameter values, the zero-NPV threshold is
given by β = 1, while the monopoly boundary is β = 6.9. We can see then that the
variation in the equilibrium exercise thresholds over time covers almost a third of that
range. Therefore, while it is well-known that uncertainty can create a large distance
between zero-NPV rules and optimal exercise, this simulation exercise shows this gap can
be greatly reduced in the presence of short-term competition, while still converging close
to its maximum in the long-run.

Third, another striking feature of the simulation is that convergence toward the steady
state is very slow. In the later phase, defeat rates display half-lives that are more than
decades long. While the speed of convergence varies with parameters of the environment,
this conclusion appears robust in additional explorations. There is still a meaningful effect
of competition decades after its peak of intensity.

Next, we investigate and discuss comparative statics on the simulated model, with par-
ticular emphasis on heterogeneity and distinctions between partial effects, when opponents
strategies are kept fixed, and the full equilibrium characterization.

4.1. An initial lead. We now study the case in which Player 1 has a technological
lead. She starts at x0

1 = 0.5, half the original distance from zero net present value. The
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opponent, Player 2, still starts at x0
2 = 0. The initial lead of Player 1 is common knowledge

to both players, and all other parameters are kept the same as in the previous section.
Figure 2 plots the results.
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Figure 2. Equilibrium comparison with an initial lead for Player 1. The arrows
and dotted lines indicate asymptotic limits.

A lead for Player 1 would, all else held constant, increase the defeat rate imposed on
Player 2. If Player 2 did not change his or her exercise threshold, Player 1 would still be
subject to the same defeat rates and would not have any incentives to change her exercise
threshold, which does not depend on the initial condition. Nevertheless, as a consequence
of the improved initial condition, he or she would still be more likely to hit that same
threshold earlier. In the presence of a more likely early defeat, Player 2 has incentives to
become more aggressive in the short-run, increasing the likelihood of an early exercise.
Player 1 has replies to this with a more aggressive (lower) exercise threshold.

The overall consequences for the equilibrium under the new initial conditions can be
seen in Figure 2. In the equilibrium with a initial lead for Player 1, both agents behave
more aggressively early on. Exercise rates increase and make the immediate end of the
game more likely. Interestingly, most of the quantitative response of the equilibrium
thresholds is concentrated on Player 2, since his or her defeat rate respond more strongly.
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The effects of the initial lead eventually vanish for both players, since the steady state
does not depend on this particular initial condition.

4.2. Faster product development. We now suppose that one player, Player 1, has
faster payoff improvements than Player 2. In particular, µ1 = 0.08 is twice the benchmark
rate, while µ2 = 0.04. This represents the case in which a leader is expected to reach any
given level of development faster.
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Figure 3. Equilibrium comparison when Player 1 is subject to larger expected
payoff increments. The arrows and dotted lines indicate asymptotic limits.

Given that Player 1 is subject to faster payoff improvements, he or she always has weakly
higher incentives to wait instead of exercising earlier. As a consequence, we can see in the
top-left panel of Figure 3 that his or her optimal exercise threshold becomes uniformly less
aggressive (higher). Two opposing forces are at play: Faster improvements increase the
option value and induce the firm to be more conservative in the entry decision, but they
also make sure any possible exercise trigger is reached earlier. Which of the two forces
dominates depends on the horizon which is studied. As the top-right panel in Figure
3 illustrates, in the short-run, the consequences of a less aggressive exercise behavior
dominate. The exercise rate lies below the symmetric original equilibrium for about
the first ten years. In the long-run however, the effect of faster technological progress
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dominates and Player 1 imposes a more intense competition on Player 2, despite the less
aggressive exercise policy.

Given this, Player 2 has incentives to behave less aggressively in the short run and more
aggressively in the future. The first effect is quantitatively very small, while the second is
more pronounced, as seen in Figure 3. The equilibrium reduction of his or her threshold,
after around year 7, helps partially offset the weaker deterrence incentives that a higher
drift creates for Player 1.

In this case, unlike in the case of a simple initial lead, there are asymptotic effects.
The higher drift means that, in the limit, Player 1 is more intensely pushed against her
threshold. Although Player 2 replies with a threshold that converges to a higher value as
a response, that has no consequences on the defeat rate that she imposes on Player 1 in
the limit, which only depends on Player 2’s own drift and volatility, not on the level of
the asymptotic threshold, as indicated by Equation 16.

A similar logic follows if we analyze a situation in which both players have higher drifts.
This comparative exercise can be used to contrast industries with different innovation
dynamics. Figure 4 illustrates this. The line labeled as partial equilibrium on the left
panel studies the consequences on a firm’s behavior from taking into account its own
higher drift, while not internalizing the change in competition. That is, for Player 1, it
keeps λ1 (the defeat rate imposed by Player 2) fixed. Notice that an increased drift would
make this firm less aggressive, as illustrated by the upward displacement of the threshold
relative to the baseline (lower drift) situation.

In equilibrium, however, despite this less aggressive threshold, the higher rate of inno-
vation increases the perceived intensity of competition. This effect, also present in the
previous exercise, dampens the tendency for less aggressive behavior. The line labeled new
equilibrium illustrates that industries with higher rates of innovation face higher entry
cutoffs.

Section S5, in the Online Supplement, compares industries where product development
is subject to different levels of risk. Again, the dynamics of competition respond in non-
trivial ways: a riskier environment corresponds to an enhanced entry threat in the short-
run, that partially offsets the increase in option values that more uncertainty generates,
but a concern for preemption that vanishes faster in the long-run.

4.3. Increase in number of opponents. Here, we study the consequences of increasing
the number of competitors from N = 2 to N = 3.
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Figure 4. Consequences of symmetric doubling of drift in the payoff process,
from µn = 0.04 (original equilibrium) to µn = 0.08 (new equilibrium). Partial
equilibrium refers to a situation in which beliefs about opponents exercise rates
are kept fixed at the original equilibrium, but the new level for one’s own drift is
taken into account. The arrows and dotted lines indicate asymptotic limits.

The dashed line in the left panel of Figure 5 illustrates a myopic approach. In this
artificial situation, a player disregards the change in the strategic exercise behavior of
his or her opponents, but takes into account that more players directly imply that the
most successful of these reaches his or her exercise trigger earlier. Given the independence
assumption regarding the payoff increments, the defeat rate for this counterfactual exer-
cise is simply twice the original one, as each player now faces twice as many individual
opponents. The best reply to that belief is to decrease exercise thresholds. Its magnitude
is much larger in the long-run than in the short-run, as defeat rates are initially low.

The full equilibrium response is illustrated by the solid lines in Figure 5. Notice that
two effects come into play during the transition phase: amplification and anticipation.
As players expect more intense competition in the future, they respond more aggressively
in the present. This effect in itself increases further current exercise rates, but also
propagates back to the previous dates. Amplification is noticeable from the fact that the
new equilibrium threshold lies below the myopic approach, while defeat rates always lie
above. Anticipation can be better noticed by looking at the troughs in the thresholds
and the peaks in the new equilibrium, which occur significantly earlier than their myopic
counterparts.
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Figure 5. The consequences from the increased number of competing players
from N = 2 to N = 3. Partial equilibrium refers to a situation in which beliefs
about the opponent’s exercise policies are kept fixed at the original equilibrium,
but the increase in the number of competitors is taken into account. The arrows
and dotted lines indicate asymptotic limits.

5. Additional Discussion

In this section, we discuss important extension of the paper and its connection with a
broad literature on investment in the presence of uncertainty and competition.

5.1. Relationship with the literature. This paper is related to a growing literature on
dynamic contests, competitive real options, and R&D studies. In particular, the game we
study belongs to the class of optimal-stopping games, as initially laid out by Dutta and
Rustichini (1993), and the subclass of preemption games, notably studied in Fudenberg
and Tirole (1985). Our approach can be also applied to closely related to war-of-attrition
and other exit games, once private information is introduced. Laraki et al. (2005) contains
both a review of applications and equilibrium existence results under complete information
and continuous time.

Another strand of literature applies game-theoretical insights into a real options frame-
work. An early example is Grenadier (1996), who studies real estate market dynamics in
a model with a single state variable, which all players observe.17 We introduce two novel
features into that framework. First, each firm is subject to a particular state describing
its payoffs if the option is exercised. This is a natural assumption for the study of research
and product development processes, but makes the problem multidimensional. Second,
17Similar environments are present in Grenadier (2002) and Weeds (2002). Grenadier (2000) provides a
good review of prior work.
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each firm is privately informed about the evolution of its own expected payoff, while other
firms can only draw some noisy inference about that variable.18

The closest paper to this set-up is Hopenhayn and Squintani (2011). As ours, the
model they study has both private information and one state variable for the payoff of
each firm. The key distinction lies in the stochastic process driving payoffs. Hopenhayn
and Squintani (2011) assume a nondecreasing process, so that exercise can only become
more valuable and, due to increasing perceived competition, also more likely as time
passes. Our paper is a more direct descendant of the traditional investment under uncer-
tainty framework (Mcdonald and Siegel, 1986; Dixit and Pindyck, 1994): Payoffs follow
a Brownian motion with drift, allowing also for reductions in expected profitability.

Importantly, the choice of the stochastic process driving the exercise payoffs is critical
for the results and has intrinsic economic content. Hopenhayn and Squintani (2011) obtain
a degree of competition that monotonically increases toward an implicit limit. Intuitively,
in a set-up in which opponents constantly accumulate discrete breakthroughs, it becomes
increasingly more likely that the next innovation (even if only marginal) is sufficient to
lead to exercise. In the setting we study, the equilibrium threat of a competitor’s entry is
typically time varying and non-monotonic.

As we discussed in the introduction, allowing for bad news about profitability is nat-
ural for many economic application. It is also essential for this non-monotonicity. The
differences between the two models are particularly clear when we examine their long-run
limits. In Hopenhayn and Squintani (2011), a firm that has been engaged in R&D for
a sufficiently long period of time without releasing a product tends to be perceived by
its competitors to be in the strongest possible position: any new breakthrough leads to
an immediate launch. In the set-up we have studied, such significant delays are instead
rationally interpreted as the consequence of a combination of negative shocks. As a result,
firms entertain the possibility that competing products long in development are actually
far away from profitable release in the near future.

While we contribute to a growing literature on R&D competition, there is a complemen-
tary literature that focuses on R&D efforts within firms. For instance, Bonatti and Hörner

18Thijssen (2010) considers multidimensionality without private information. Lambrecht and Perraudin
(2003) study an environment with a common randomly evolving payoff state and private information
regarding a static exercise cost. Quah and Strulovici (2013) study an individual optimal stopping problem
in the presence of non-stationary discounting. Seel and Strack (2013b) consider competition in an optimal
stopping problem under private information without strategic deterrence, i.e., the timing of exercise is
not relevant.
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(2011) study moral hazard in teams, with belief updates about a project’s profitability,
while Guo and Roesler (2018) introduce endogenous exit and the associated threat of an
informed collaborator leaving the firm.19

Methodologically, our approach relies on a coupled system of differential equations: a
forward-looking value function (or equivalently an exercise threshold) and a backward-
looking evolution of beliefs about opponents. Similar coupled systems, with forward-
looking value functions and backward-looking population dynamics, are studied in the
growing mean-field games literature.20 In particular, Bayraktar et al. (2018) study a
R&D tournament with a continuum of players and costly efforts. The payoffs depend on
the order of completion of a project, where completion occurs when the state reaches a
fixed level. We see our approach as complementary, since we allow firms to choose when
to market a product, creating a tension between option values and deterrence, while
Bayraktar et al. (2018) focus on the intensive margin of R&D efforts.

5.2. Extensions. In Appendix C, we briefly cover multiple extensions of the model.
We start by formalizing how a simple change of variable can be used to deal with a
innovation process that follows a geometric Brownian motion, common in many real
option applications. We also discuss how some results continue to hold for alternative
payoff structures, including a less extreme assumption that followers receive some residual
payoff and another assumption in which competitors face running costs. Last, we discuss
the technical challenges in dealing with correlated innovations in profitability, which are
left for future work.

5.3. Existence, uniqueness, and regularity for arbitrary initial conditions. In
Section 3.4, we fully characterize the set of priors which are consistent with stationarity.
For each prior in this class, we prove existence and uniqueness of a stationary equilibrium.
Section 3.5 builds on these results. We show that, for a large class of priors, equilibria

19Bobtcheff and Mariotti (2012) and Bobtcheff et al. (2016) study environments in which opponents come
into play at random times, after they are enabled by a seminal technological breakthrough. Whenever
active, players decide whether to release or delay a new product. Exercise payoffs evolve deterministically
at that stage (“maturation”). Hopenhayn and Squintani (2015) study optimal policy in a related set up,
while Dosis and Muthoo (2019) study competitive experimentation in a two-stage R&D race. By bridging
the gap between this growing literature and the standard real option approach, where both good and
bad news about profitability can be revealed, we facilitate the exploration of a new set of interactions
between pricing, competition, information, and policy.
20See, for instance, Lasry and Lions (2007) and Bensoussan et al. (2013). For macroeconomic applications,
relying on general equilibrium theory interactions, see Achdou et al. (2014).
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that display differentiable exercise rates converge to the stationary equilibrium displaying
the highest possible intensity of competition is the limit. Some open questions remain.

First, existence, uniqueness, and regularity of equilibria remain to be established for
arbitrary initial conditions.21 Second, it is plausible that each initial condition that does
not belong to the class we have considered (of distributions with bounded support) still
converges to a given stationary equilibrium within the set we have exhaustively char-
acterized. There is an active literature in applied probability, including Martinez and
San Martin (1994); Martinez et al. (1998), that studies this question in non-strategic
settings. The complete characterization of the mapping from priors to limit behavior in
strategic settings, as ours, is a challenging topic for future research.

5.4. Conclusion. Our model naturally extends the canonical investment under uncer-
tainty setting, incorporating private information and strategic preemption. We explicitly
characterize stationary equilibria, with a particular focus on the intensity of competition
that players perceive, given by a defeat rate. We also develop methods for describing the
dynamics of conditional beliefs about opponents’ conditions, optimal exercise strategies,
and market-entry rates.

Due to their generality, these methods promise to shed light on a large class of games
combining evolving information and belief dynamics. We keep the main set-up particularly
simple, abstracting from important issues like price competition, the optimal intensity
of R&D efforts, and strategic information revelation. We believe some extensions can
fruitfully address questions related to optimal technological development policies and the
value of information in technological competition.22

We also develop an algorithm and illustrate the applied potential from this frame-
work by performing equilibrium computation and comparative dynamics exercises. For
example, from a simple project valuation perspective, as the intensity of competition sig-
nificantly changes over time and transition dynamics are very long lived, any analysis
based on ad hoc effective discount rates can lead to large valuation errors.
21The main difficulty lies in proving the continuity of the distribution of the optimal stopping times with
respect to opponents’ strategies. One of the reasons is that establishing enough regularity of the optimal
stopping threshold for a general non-stationary problem is hard, if not impossible. If, to tackle that issue,
restrictions are imposed on the distribution of players’ optimal stopping times, then the difficulty lies in
establishing that the best reply is consistent with these additional restrictions.
22More generally, our model is a particular case in a larger class, where population dynamics and op-
timal stopping interact. Other instances involve equilibrium price resetting under menu costs, optimal
contracting with a population of agents, and industry dynamic models with costly entry and exit. The
out-of-steady-state behavior of most of these models remains largely to be explored, for instance.
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Appendix A. Proofs omitted from the main text

The following verification argument is used in the proof of Proposition 1:

Lemma 2. If (Vn, βn) is a smooth value-threshold pair that solves the free-boundary problem given by Equations 6, 7, and

8, then

Vn(xn, t) = sup
τn∈Sn

Jn(τn, τ−n|t)
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for all τ−n ∈ S−n that induce the defeat rate λn(t). Moreover, the first-passage time through βn is an optimal stopping

time.

Proof. The proof is an application of Theorem 1 in Brekke and Øksendall (1991). To apply the result, define hn(xn, t) ≡

e−rt−
´ t

0 λn(s)dsVn(xn, t). Adopting the shorthand hn ≡ hn(xn, t), it is easy to verify that

µn
∂hn

∂xn
+

1
2
σ2
n

∂2hn

∂x2
n

+
∂hn

∂t
= e−rt−

´ t
0 λn(s)ds

(
µn

∂Vn

∂xn
+

1
2
σ2
n

∂2Vn

∂x2
n

+
∂Vn

∂t
− [r + λn(t)]Vn

)
= 0,

for all xn < βn(t) and t > 0. Moreover, hn(βn(t), t) = e−rt−
´ t

0 λn(s)ds(βn(t) − Kn) and ∂hn(xn,t)
∂x

|x=βn(t) =

e−rt−
´ t

0 λn(s)ds. Condition 2 for Lemma 1 in Brekke and Øksendall (1991) holds, as Xn is uniformly elliptic and the

open set D ≡ {(xn, t) ∈ R× [0,∞]|xn < βn(t), t > 0} has a continuously differentiable boundary in R × (0,∞) with

a zero Lebesgue measure spatial boundary for each fixed t. Moreover, since µn > 0 and τ̂n ≤ τn by Proposition

2, the first-exit time from D is a.s. finite. It thus follows from Theorem 1 in Brekke and Øksendall (1991) that

hn(xn, t) = supτn∈Sn e
−rt−

´ t
0 λn(s)dsJn(τn, τ−n|t) and that this value is obtained by the first-passage time through βn.

We conclude that Vn(xn, t) = ert+
´ t

0 λn(s)dshn(xn, t) = supτn∈Sn Jn(τn, τ−n|t). �

Proof of Proposition 1. For Part 1, Theorem 5 in Lehmann (2002) implies that the distribution of τ̂n has a continuous

density for each n ∈ N . The existence of continuous hazard rates thus follows from Equation 15. The smoothness

assumption on Vn directly implies the boundary conditions given by Equations 7 and 8. The validity of the HJB equation

in the continuation region is a standard application of Itô’s lemma.

As for Part 2, existence and continuity of the hazard rates (λ1, ...λN ) follows from the argument in Part 1. By Lemma

2, each first-passage time τ̂n is a best-response to τ̂−n for player n ∈ N after any of his or her private histories. This means

that (τ̂1, ..., τ̂N ) is an equilibrium. �

Proof of Proposition 2. In the supplementary material, we prove that equilibrium value functions are increasing and convex

in the state. These basic properties imply that a value matching condition holds, so that Vn and βn satisfy Vn(βn, t) =

βn −Kn and

βn(t) = inf {xn ∈ R|Vn(xn, t) ≤ xn −Kn}

It follows that βn(t) ≤ βn. Suppose, seeking a contradiction, that βn(t0) < β
n
for some t0 ∈ R+. Then Vn(βn(t0), t0) =

βn(t0) −Kn by value matching. Since Kn = β
n
> βn, we have V (βn(t0), t0) < 0. This cannot happen in equilibrium as

never exercising (i.e. τ̂n = +∞) is a feasible strategy which guarantees a zero payoff. Once we have β
n
≤ βn ≤ βn, the

inequalities for the stopping times are immediate. �

Proof of Proposition 3. The proof is constructive. Given, η = (η1, ..., ηN ), Equation 17 defines exercise thresholds β =

(β1, ..., βN ). For each n ∈ N , Lemma 1 provides the unique prior marginal distribution F 0
n that induces ηn as the hazard

rate of the first-passage time of Xn through β. Fix the prior at F 0 = (F 0
1 , ..., F

0
N ) and let τn be the first-passage time of Xn

through βn (using F 0
n as the distribution of Xn(0)). It remains to verify that τ ≡ (τ1, ..., τN ) is a stationary equilibrium.

For each n ∈ N , using the value function defined in Equation 18, we can construct a value-threshold pair (Vn, βn) satisfying

Equations 6, 7, and 8 given the (constant) defeat rate λn defined in Equation 16. By the second part of Proposition 1, τ

is an equilibrium in threshold strategies. In fact, since the exercise thresholds used in the construction are constant, τ is a

stationary equilibrium. �

Proof of Lemma 1. It is easy to show that the proposed prior marginal distribution, Fn, induces the desired absorption

ηn and that its density, fn, satisfies Equation 20 as well as the boundary condition fn(βn) = 0. It is also relatively

straightforward (albeit a bit tedious) to show that no other probability density over
(
−∞, βn

]
solves Equation 20 as well

as the boundary condition fn(βn) = 0.

It remains to establish that no other prior marginal distribution induces the desired absorption. For this, we adapt

Proposition 1 in Jackson et al. (2009). We are interested in a distribution over
(
−∞, βn

]
, with density g, such that the

absorption probability over the interval [0, t] is Γn (t) = 1 − e−ηnt. This is equivalent to the absorption density satisfying
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γn (t) = ηne
−ηnt. Notice that the Laplace transform of γn is Lγn (s) ≡

´∞
0 e−stγn (t) dt = (ηn + s)−1ηn. With a constant

absorption boundary at βn, drift µn, and volatility σ2
n, the first-passage time for a fixed initial condition x0

n has density

(21) γn
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n

)
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2πt3
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)
=
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)
dt = exp
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− 2s
)(

βn − x0
n

σn
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.

The first-passage time, given the initial density g, satisfies

γn (t) =
ˆ βn
−∞

γn
(
t|x0

n

)
g
(
x0
n

)
dx0
n.

Applying the Laplace transform to the RHS, we obtain

Lγn (s) =
ˆ ∞

0
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[ˆ βn
−∞

γn
(
t|x0

n

)
g
(
x0
n

)
dx0
n

]
dt =

ˆ βn
−∞

[ˆ ∞
0

e−stγn
(
t|x0

n

)
dt

]
g
(
x0
n

)
dx0
n,

=
ˆ βn
−∞

Mn

(
−s|x0

n

)
g
(
x0
n

)
dx0
n =

ˆ βn
−∞

e

(
µn
σn
−

√
µ2
n
σ2
n

+2s
)(

βn−x
0
n

σn

)
g
(
x0
n

)
dx0
n.

We change spatial variables, taking y ≡ σ−1
n

(
βn − x0

n

)
and defining ν (y) ≡ σ−1

n g
(
βn − σny

)
, so that

Lγn (s) = σ2
n

ˆ ∞
0

e
−
(√

µ2
n
σ2
n

+2s−µn
σn

)
y

ν (y) dy ≡ σ2
nLν (w) ,

where Lν is the Laplace transform of ν and w ≡
√
µ2
n/σ

2
n + 2s−µn/σn. Solving for s to invert this last change of variables,

we obtain s = 1
2w

2 + µn
σn
w. Thus, we can write Lγn

(
1
2w

2 + µn
σn
w
)

= σ2
nLν (w) and, therefore, we have

(22) Lν (w) =
1
σ2
n

(
ηn

ηn + 1
2w

2 + µn
σn
w

)
.

Note that, using fn as our g and defining ν (y) ≡ σ−1
n fn

(
βn − σny

)
, we obtain the transform

Lν (w) ≡
ˆ ∞

0
e−wyν (y) dy =

1
σ2
n

(
ηn

ηn + 1
2w

2 + µn
σn
w

)
= Lν(w).

By the invertibility of the Laplace transform, this implies that ν = ν. Undoing the spatial change of variables, we obtain

g = fn, proving the claim. �

It is easy to verify that, if the defeat rate perceived by a player is constant, then his or her optimal exercise threshold is

constant. The following lemma establishes that the converse is also true.

Lemma 3. If the optimal exercise threshold for Player n is a constant βn when the defeat rate is λn, then λn(t) = λn ≡

µn
(
βn −Kn

)−1
+ 1

2σ
2
n

(
βn −Kn

)−2
− r for all t ≥ 0.

Proof. Assume that the constant βn is the optimal exercise threshold for Player n when his or her perceived defeat rate is

λn. We claim that λn (t) = λn for all t ≥ 0. Since the exercise threshold is constant, the value function can be written as:

Vn (xn, t) =
(
βn −Kn

) ˆ ∞
0

e−ρn(t+s,s)γn
(
s|xn, 0, βn

)
ds,
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where we define the effective discount factor ρn(t + s, t) ≡
´ t+s
t [r + λn(h)] dh and γn

(
s|xn, 0, βn

)
is the density of the

first-passage time through βn at time s starting from state xn at time 0. This implies that
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)
∂xn

ds.

Furthermore, the exercise threshold needs to be optimal against uniform perturbations on βn. Using the translation

invariance γn
(
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)
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)
, we obtain

∂Vn (xn, t)
∂βn

=
ˆ ∞

0
e−ρn(t+s,s)γn

(
s|xn, 0, βn

)
ds−

(
βn −Kn

) ˆ ∞
0

e−ρn(t+s,s) ∂γn
(
s|xn, 0, βn

)
∂xn

ds = 0.

It follows that Vn (xn, t) =
(
βn −Kn

)
∂Vn(xn, t)/∂xn for all xn < βn. Differentiating further and substituting, we obtain

Vn (xn, t) =
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)2
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n. The HJB equation then yields
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Solving for λn(t), we obtain λn (t) = λn + ∂Vn(xn,t)
∂t

1
Vn(xn,t)

, which is valid for all xn < βn. Taking the limit as xn ↑ βn,

we obtain
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1
Vn(xn, t)

]
= λn +

∂Vn
(
βn, t

)
∂t

1
Vn(βn, t)

= λn +
0

βn −Kn
= λn,

as claimed. �

Proof of Proposition 4. We will first establish Properties ii to v, and then Property i. Let τ be a stationary equilibrium.

Then, by definition, each τn is the first-passage time through some constant exercise threshold, βn. By Lemma 3, the

defeat rate of Player n must be the constant λn ≡ µn
(
βn −Kn

)−1
+ 1

2σ
2
n

(
βn −Kn

)−2
− r. Recall that, in equilibrium,

λn(t) =
∑

m 6=n ηm(t) for n ∈ N . Independently of whether the equilibrium is stationary or not, this system of linear

equations can be explicitly inverted to yield ηn(t) = (N − 1)−1
[∑

m 6=n λm(t)− λn(t)
]
. It follows that the equilibrium

exercise rates must also be constant: ηn(t) = ηn ≡ (N − 1)−1
[∑

m 6=n λm − λn
]
. To establish ηn ∈

(
0, 1

2
µ2
n

σ2
n

]
, note that

Equation 22 in the proof of Lemma 1 can be formally obtained for any ηn ∈ R. Inverting the Laplace transform in this

expression, we obtain

ν (y) = 2ηne
−µn
σn

y
sinh

(√
µ2
n−2ηnσ2

n
σn

y

)
σn
√
µ2
n − 2ηnσ2

n

,

where y ∈ [0,+∞). Note that ηn < 0 is inconsistent with equilibrium, as there is no mass infusion in this model, only

absorption. Also, if ηn = 0, we have g
(
x0
n

)
= σnν

(
σ−1
n (βn − x0

n)
)

= 0 for all x0
n ∈ (−∞, βn], which is not a proper

probability density. Moreover, if ηn > 1
2
µ2
n

σ2
n
, we can define A(y) ≡ 2ηne

−µn
σn

y

σn
√

2ηnσ2
n−µ2

n

∈ [0,+∞), B ≡
√

2ηnσ2
n−µ2

n
σn

∈ [0,+∞)

and write the expression above as ν (y) = A(y)(1/i) sinh (Byi) = A(y) sin(By). It follows that ν (y) is negative whenever

sin(By) is negative. As a result, g
(
x0
n

)
= σnν

(
σ−1
n (βn − x0

n)
)
is negative over a set of x0

n ∈ (−∞, βn] that has positive

Lebesgue measure and, thus, cannot be a probability density. We conclude that, if ηn ≤ 0 or ηn > 1
2
µ2
n

σ2
n
, there exists no

prior marginal distribution F 0
n that induces 1−Γn (t) = e−ηnt. Together with Lemma 1, this observation implies Property

ii.

Given that defeat rates are constant, Equations 16, 17, and 18 must hold in any stationary equilibrium, so Properties

iii and iv are necessarily satisfied. Property v is an immediate consequence of Lemma 1.

Finally, to show that Property i holds, suppose, seeking a contradiction, that there exists another stationary equilibrium

τ ′ 6= τ . Clearly, there must be at least one player for whom the exercise threshold in equilibrium τ ′ must differ from the
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one in equilibrium τ , say β′n 6= βn. Following the steps of the argument we used to prove Property ii, we can determine the

equilibrium exercise rate η′n ∈
(

0, 1
2
µ2
n

σ2
n

]
. In equilibrium, the prior marginal distribution for Player n should be consistent

with inducing a constant first-passage rate η′n through the threshold β
′
n. Using Lemma 1, it is easy to see such prior

marginal distribution should have support (−∞, β′n], while F 0
n has support (−∞, βn] 6= (−∞, β′n]. We conclude that τ ′

cannot be a stationary equilibrium under F 0. �

The following definition and lemma will be used in the proof of Proposition 5. Let

Υn(t, h) ≡ log
(1− Γn(t+ h)

1− Γn(t)

)
.

Lemma 4. Assume that the prior is degenerate at some arbitrary x0 and consider an equilibrium such that β(0) > x0.

Then, for every n ∈ N and h ∈ R+, we have

lim
t→+∞

(Υn(t, h)
h

)
= η∗n.

Proof. According to Proposition 2, equilibrium exercise thresholds must satisfy β
n
≤ βn ≤ βn with β

n
< βn for every

n = 1, ..., N . Let Γn and Γn be the absorption probabilities associated with constant exercise thresholds β
n
and βn. Clearly,

Γn(t) ≤ Γn(t) ≤ Γn(t) for all t ∈ R+. We will start showing that there exist a constant A ∈ [0,+∞) such that, for all

h ∈ [0,+∞), we have

(23) lim sup
t→+∞

Υn(t, h) ≤ η∗nh+A.

Clearly, Γn(t) < Γn(t) for all t > 0. Hence, for every t > 0 and h ∈ R+, we have 1−Γn(t+h)
1−Γn(t) >

1−Γn(t+h)
1−Γn(t)

. Thus,

Υn(t, h) < − ln
(

1−ΓKn (t+h)
1−ΓMn (t)

)
. Using L’Hôpital’s rule, we can explicitly compute:

lim
t→+∞

(
1− Γn(t+ h)

1− Γn(t)

)
= e
−µn
σ2
n

(
βn−βn+ 1

2µnh
) (

β
n
− x0

n

βn − x0
n

)
.

It follows that

lim sup
t→+∞

Υn(t, h) ≤ lim
t→+∞

[
− ln

(
1− Γn(t+ h)

1− Γn(t)

)]
= − ln

[
lim

t→+∞

(
1− Γn(t+ h)

1− Γn(t)

)]
= η∗nh+A

where we define A ≡ µn
σ2
n

(
βn − βn

)
+ ln

(
βn−x

0
n

β
n
−x0

n

)
. Running a symmetric argument, we can obtain a lower bound for the

limit inferior: lim inft→+∞Υn(t, h) ≥ η∗nh−A. Next, we will show that, for all h ∈ R+, we actually have

lim
t→+∞

Υn(t, h) = η∗nh.

Fix h ∈ R+ and an arbitrary increasing and unbounded sequence of times {tj}j∈N. The claim will be proven if we can

show limj→+∞Υn(tj , h) = η∗nh. Since {Υn(tj , h)}j∈N is eventually confined to the compact interval [0, η∗nh+A+ 1], there

is no loss in assuming that the whole sequence lies in a compact interval. Moreover, it is well-known that a sequence in a

compact space X converges to x ∈ X if and only if every convergent subsequence converges to x. As a result, it suffices to

show that limj→+∞Υn(tj , h) = η∗nh whenever the limit exists. So, assuming that the limit limj→+∞Υn(tj , h) exists, for

every m ∈ N, we have

Υn(tj ,mh) = − ln
(

1− Γn(tj +mh)
1− Γn(tj)

)
= − ln

[
m∏
l=1

(
1− Γn(tj + lh)

1− Γn(tj + (l − 1)h)

)]

=
m∑
l=1

[
− ln

(
1− Γn(tj + lh)

1− Γn(tj + (l − 1)h)

)]
=

m∑
l=1

Υn(tj + lh, h).
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This formally implies that

lim
j→+∞

Υn(tj ,mh) = lim
j→+∞

m∑
l=1

Υn(tj + lh, h) =
m∑
l=1

lim
j→+∞

Υn(tj + lh, h) = m lim
j→+∞

Υn(tj , h).

Reversing the derivation proves that the limit in the left-hand-side must also exist. It follows that

lim
j→+∞

Υn(tj ,mh) = lim inf
j→+∞

Υn(tj ,mh) = lim sup
j→+∞

Υn(tj ,mh).

Then, using the inequalities for the limit inferior and superior, we get η∗nmh − A ≤ limj→+∞Υn(tj ,mh) ≤ η∗nmh + A.

Combined with the additivity obtained above, this implies that η∗nh− 1
m
A ≤ limj→+∞Υn(tj , h) ≤ η∗nh+ 1

m
A. Since this

inequality holds for every m ∈ N, we must have η∗nh ≤ limj→+∞Υn(tj , h) ≤ η∗nh, establishing the desired result. �

Now we can proceed to prove Proposition 5.

Proof of Proposition 5. Since the proof is relatively long, we only sketch the key steps here. A complete proof is available

in Part S2 of the supplementary material.

Fix an equilibrium satisfying Assumptions 1 and 2. By Assumption 1, there is positive probability of the game continuing

after t = 0 (and, in fact, after any t ≥ 0). As a result, we can safely ignore those paths of play along which the game is

stopped at t = 0, as they are irrelevant for future equilibrium behavior (and, thus, for asymptotics).

The equilibrium exercise threshold of Player n is constrained between β
n

and βn. Moreover, Lemma 4 implies that,

in the case of a degenerate prior, we have limt→+∞Υn(t, h) = η∗nh for every h ∈ R+. A technical argument (see S2.1)

shows that this limit also holds when the prior satisfies Assumption 1. This result is important because it pins down the

asymptotic behavior of the effective discount factors players use to compute their optimal strategies. More specifically, if

we define

Λn(t, h) ≡ log
(

1−G[−n](t+ h)
1−G[−n](t)

)
the effective discount factor of Player n is e−rh−Λn(t,h). It is easy to check that Λn(t, h) =

∑
m 6=n Υm(t, h), so the limit

limt→+∞Υn(t, h) = η∗nh in fact implies that

lim
t→+∞

Λn(t, h) = lim
t→+∞

∑
m 6=n

Υm(t, h) =
∑
m 6=n

lim
t→+∞

Υm(t, h) =
∑
m 6=n

η∗nh = λ∗nh,

which obviously leads to the convergence of the effective discount factor.

Convergence of effective discount factors implies uniform convergence of values (Property i). To see this, let Un(xn, t, βn)

be the payoff that Player n obtains by playing an arbitrary continuation boundary βn : [0,+∞) → R when he or she is

at state xn at time t and has a discount factor e−rh−Λn(t,h) ≥ 0 from time t to time t + h. Let U∗n(xn, βn) the payoff

that a monopolist with discount rate r + λ∗n would obtain at state xn by playing the same continuation boundary βn.

Define Vn(xn, t) ≡ supβn Un(xn, t, βn) and V ∗n (xn) ≡ supβn U
∗
n(xn, βn). Both suprema are attained by thresholds taking

values in [β
n
, βn]. Using limt→+∞ Λn(t, h) = λ∗nh, we prove that, for every x ∈ R and βn : [0,+∞) → [β

n
, βn], we

have limt→+∞ Un(xn, t, βn) = U∗n(xn, βn) (see S2.2). Let β̂n be a threshold that attains Vn(xn, t) and let β∗n be the

constant threshold that attains V ∗n (xn). On the one hand, Vn(xn, t) = U(xn, t, β̂n(t)) ≥ U(xn, t, β∗n) for all t ≥ 0. Since

limt→+∞ U(xn, t, β∗n) = U∗(xn, β∗n) by the argument above, we have

lim inf t→+∞Vn(xn, t) ≥ lim
t→+∞

U(xn, t, β∗n) = U∗(xn, β∗n) = V ∗n (xn).

On the other hand, dominated convergence can be used to show lim supt→+∞ Vn(xn, t) ≤ V ∗n (xn). This gives pointwise

convergence of the value functions. Uniform convergence follows from combining pointwise convergence with the following

properties of the value functions: they are non-negative, increasing, continuous, agree on [βn,+∞) and vanish when

x→ −∞.
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To establish Property iii, note that, under Assumption 2, we have

lim
t→+∞

λn(t) = lim
t→+∞

lim
h↓0

(Λn(t, h)
h

)
= lim
h↓0

lim
t→+∞

(Λn(t, h)
h

)
= λ∗n,

where the possibility of exchanging limits can be deduced from the assumption that the derivative dλ(t)/dt is uniformly

bounded and the Moore-Osgood theorem.

To obtain Property ii, we define λLn(t) ≡ infh≥0 λn(t + h) and λHn (t) ≡ suph≥0 λn(t + h). By construction, λLn(t) ≤

λ(t + h) ≤ λHn (t) for all t, h ≥ 0. Let βLn (t) and βHn (t) be the optimal exercise threshold of a monopolist with constant

discount rates r + λLn(t) and r + λHn (t), respectively. A simple argument shows that βLn (t) ≥ βn(t) ≥ βHn (t). Property iii

implies that limt→∞ λLn(t) = lim inft→∞ λn(t) = λ∗n and limt→∞ λHn (t) = lim supt→∞ λn(t) = λ∗n. Thus, by definition,

limt→+∞ βLn (t) = limt→+∞ βHn (t) = β∗n, as desired.

Finally, it remains to establish convergence of beliefs. The argument proceeds as follows. The characteristic function of

the conditional belief F̂n(·, t) has the following integral representation:

ψn(ω, t) =
ψn(ω, 0)−

´ t
0 e

Mn(ω)s+iωβn(s)Γn(ds)
eMn(ω)t [1− Γn(t)]

,

where Mn(ω) ≡ (1/2)σ2
nω

2 − µnωi, while the characteristic function of F̂ ∗n satisfies

ζn(ω) =
eωβ
∗
niλ∗n

λ∗n −Mn(ω)
.

The application of an extension of L’Hôpital’s rule to the complex function ψn proves that there exists ω0 > 0 such that

ψn(ω, t) converges to ζn(ω) for all ω ∈ (−ω0, ω0). Convergence of characteristic functions in a fixed neighborhood of 0

is enough to guarantee convergence in distribution of the state conditional on the absence of exercise. More precisely,

limt→+∞ F̂n(xn, t) = F̂ ∗n(xn) for all xn at which F̂ ∗n(·) is continuous (that is, everywhere). The proof of this last claim

combines the fact that F̂n(βn, t) = 1 for all t ≥ 0 with a modification of Lévy’s continuity theorem for sequences of random

variables uniformly bounded above (or below) due to Zygmund (1951). �

Appendix B. integral Representations of Beliefs, Absorption Rates, and Value Functions

B.1. Integral Representation of the Distribution over Payoff States and the Absorption Density. In this

section, we offer an integral representation of the backward-looking system in Equations 9-12. To simplify the exposition,

we focus on the case in which the prior marginal distribution for Player n ∈ N is a point mass at x0
n, so Equation 10

specializes to fn (xn, 0) = δ
(
xn − x0

n

)
, where δ is the Dirac delta function.

Proposition 6. Whenever the absorption boundary βn is continuously differentiable on (0,+∞), the survival density

fn(xn, t|x0
n) admits the following integral representation:

(24) fn(xn, t|x0
n) =

φ

(
xn−x0

n−µnt
σn
√
t

)
σn
√
t

−
ˆ t

0

φ

(
xn−βn(h)−µn(t−h)

σn
√
t−h

)
σn
√
t− h

γn(h|x0
n)dh.

In turn, the exercise density γn is the unique bounded solution to

(25) γn(t|x0
n) =

φ
(
An(t|x0

n)
)
An(t|x0

n)
t

−
ˆ t

0

φ (Bn(t, h))Bn(t, h)
t− h

γn(h|x0
n)dh,

where

An(t|x0
n) ≡

βn(t)− x0
n − µnt

σn
√
t

and Bn(t, h) ≡
βn(t)− βn(h)− µn(t− h)

σn
√
t− h

.

Proof. In Part S3 of the supplementary material. �

The interpretation of Equation 24 is as follows. The first term on the right-hand side is always positive and describes

the density of a Brownian motion without taking absorption into account. However, some paths that would have reached
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Xn(t) = xn have crossed the boundary previously at some time h < t and need to be subtracted. At instant h < t, a

density γn(h|x0
n) of paths is absorbed at state Xn(h) = βn(h). Conditional on being at that state at time h, they would

have reached xn at time t with a probability density given by

φ

(
xn−βn(h)−µn(t−h)

σn
√
t−h

)
σn
√
t− h

.

Therefore, the last term in Equation 24 integrates over 0 ≤ h < t, thereby effectively subtracting all previously absorbed

paths.

Notice, however, that the characterization of the density fn is incomplete without a description of the absorption

density γn(t|x0
n). That absorption rate can be obtained as a function of the mass that is near the boundary, βn, at time

t, as indicated by Equation 12. It is also worth noting that Equation 25 is quite convenient for computational purposes,23

because it has a recursive backward-looking structure and can be easily approximated by a finite sum. We also define the

distribution associated with density γn(t), which is particularly important for describing the arrival rate of the end of the

game.

Together, Equations 24 and 25 fully characterize the dynamics of the individual state conditional on any arbitrary

boundary. Whenever we restrict attention to the equilibrium threshold, βn, these equations describe the equilibrium beliefs

of the opponents of Player n. As previously discussed, that includes more information than strictly necessary to compute

the optimal policies of those players. For that, it is sufficient to describe the defeat rate as perceived by them, which is a

sufficient statistic for the individual problem.

So far, Equations 24 and 25 compute the survival and absorption densities when the initial position x0
n is commonly

known. To generalize them toward any prior marginal distribution F 0
n , one simply needs to integrate these two functions

against that distribution.

B.2. Optimal policy. In this section, we provide analytic expressions for optimal exercise thresholds and value functions

in smooth equilibria. First, we define Player n’s effective discount factor between dates t and h > t, e−ρn(h,t), by setting

(26) ρn(h, t) ≡
ˆ h
t

[r + λn(s)] ds.

This effective discount factor summarizes all the strategic information about Player n’s competitors and allows us to state

the following result.

Proposition 7. Suppose that, for each n ∈ N , (Vn, βn) is an equilibrium smooth value-threshold pair and limt→∞ Vn(xn, t)

exists for every xn ∈ R. Then, βn satisfies the following integro-differential equation:

(27) βn(t)−Kn =
ˆ ∞
t

e−ρn(h,t)
φ

(
βn(h)−βn(t)−µn(h−t)

σn
√
h−t

)
σn
√
h− t

[
σ2
n +
(
βn(h)− βn(t)

h− t
− 2

dβn(h)
dh

+ µn

)
(βn(h)−Kn)

]
dh,

while the corresponding value function Vn is described, in the continuation region, by

(28) Vn(xn, t) =
1
2

ˆ ∞
t

e−ρn(h,t)
φ

(
βn(h)−xn−µn(h−t)

σn
√
h−t

)
σn
√
h− t

[
σ2
n +
(
βn(h)− xn

h− t
− 2

dβn(h)
dh

+ µn

)
(βn(h)−Kn)

]
dh.

Proof. In the supplementary material. �

Proposition 7 shows that the equilibrium exercise threshold is a fixed point of the operator on the right-hand side of

Equation 27. The existence of the limit for the value function is guaranteed under Assumption 1 by Lemma 10.

Notice that Equation 27 does not require the separate computation of the evolution of the exercise density over future

exercise times, which is embedded in the operator. This feature is common to some analytic representations of the value of

23Equation 25 belongs to the class of Volterra integral equations of the second kind.
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American call-options, as derived by McKean (1965), Kim (1990), and Jamshidian (1992).24 Moreover, the value function

is fully determined by the behavior of the exercise threshold.

Appendix C. Extensions

In this section, we briefly discuss possible extensions of the model.

C.1. Geometric Brownian Motion and Alternative Stochastic Processes for Payoffs. The model we have studied

assumes that payoff innovations are additive, identically distributed, and independent. In the investment under uncertainty

literature, another process is frequently used, the geometric Brownian motion, which features multiplicative innovations. It

can be represented by
dX̂n(t)
X̂n(t)

= µ̂ndt+ σ̂ndZn(t),

where µ̂n represents a geometric drift term and σ̂n a exposure of the growth rate to the innovation in the standard Brownian

Zn(t).

We can do the change of variables Xn(t) ≡ log X̂n(t) and obtain

Xn(t) = µndt+ σndZn(t),

where µn = µ̂n −
σ̂2
n
2 and σn = σ̂n. In terms of these new variables, we write

Vn(xn, t) = sup
τn≥t

E
{
e−r(τn−t)1τn<τ̂[−n]

(
eXn(τn) −Kn

)∣∣Xn(t) = xn, τ̂[−n] ≥ t
}
.

The HJB equation in the continuation region is still given by Equation 6. The only relevant changes are in the value-matching

and smooth-pasting conditions, which become, respectively,

Vn (βn(t), t) = eβn(t) −Kn and
∂Vn (βn(t), t)

∂xn
= eβn(t).

In this case, the monopolist problem has a solution as long as µ̂n < r. Under this assumption and the change in boundary

conditions for the value function, the characterization we have in the previous sections applies. In particular, the limit results

are valid for the implied arithmetic Brownian motion. Interestingly, the threat of entry by Player n perceived by his or her

opponents vanishes in the limit for some cases in which µ̂n > 0, as it becomes possible that µn = µ̂n − 1
2σ

2
n ≤ 0.25

The same reasoning, following a change of variables, allows generalizations of all results for processes and terminal

payoffs that are increasing functions of an arithmetic Brownian motion. For more general Itô processes, generalizations

of the results derived in Section 3.2 can be obtained. The key modification is that probability densities specific to those

processes, as opposed to the normal distribution, emerge in the specific version of Proposition 6. Stationary equilibria can

be constructed for more general cases following the insights from the literature on Brownian mortality models. However,

the corresponding convergence results remain a topic for future research.

C.2. Beyond the winner-take-all case. For simplicity, we have assumed that all players that fail to be the first to

exercise obtain a payoff of zero. More generally, we could have assumed that, in the event of defeat, Player n obtains a

payoff of 0 ≤ Ln(xn, t) ≤ VMn (xn), which is convex, smooth, and nondecreasing in xn, and bounded by the monopolist

value function VMn . Additionally, let it have a well-defined limit, limt→∞ Ln(xn, t) = L∗n (xn), which also satisfies these

assumptions. In this more general case, Ln(xn, t) could be motivated by another stage of a game, in which late entrants

still have actions available.

24The integral equation approach to free-boundary problems was pioneered by Kolodner (1956). Peskir and Shiryaev (2006)
provide a detailed treatment of the free-boundary approach to optimal stopping. See Chiarella et al. (2004) for a survey of
the integral representations for American financial options.
25In this case, we can characterize a degenerate limit, in which generalized beliefs assign mass points at minus infinity for
the position of every opponent.
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The HJB would then be given by

rVn = max
{
µn

∂Vn

∂xn
+

1
2
σ2
n

∂2Vn

∂x2
n

+ λn(t) [Ln(xn, t)− Vn] +
∂Vn

∂t
, r (xn −Kn)

}
.

In the continuation region, we can rewrite it as

[r + λn(t)]Vn = λn(t)Ln(xn, t) + µn
∂Vn

∂xn
+

1
2
σ2
n

∂2Vn

∂x2
n

+
∂Vn

∂t
.

Notice that, beyond generating a modified discount rate of r + λn(t), the threat of an opponent’s entry generates a flow

payoff externality of λn(t)Ln(xn, t) on the value of Player n. This flow is now positive, but it was previously normalized to

zero. As a consequence, the value function would always be larger than in the case of Ln(xn, t) = 0.

After accounting for this change in the HJB equation, there are no major departures in the characterization. The exercise

thresholds are still bounded between a monopolist and perfect competition, and limit behavior are analogous to what has

been derived.

C.3. Running costs, abandonment options. Again, for simplicity, we have assumed that firms face negligible running

costs and a single decision, involving the time of entry. In some applications, researchers can be interested in the case in

which running costs are significant and endogenous abandonment occurs.

These setups allow a few variations. Suppose first that exit cannot occur, but a running cost of cn > 0 is present. Then

the HJB equation satisfies

rVn = max
{
−cn + µn

∂Vn

∂xn
+

1
2
σ2
n

∂2Vn

∂x2
n

− λn(t)Vn +
∂Vn

∂t
, r (xn −Kn)

}
= max

{
µn

∂Vn

∂xn
+

1
2
σ2
n

∂2Vn

∂x2
n

− λn(t)Vn +
∂Vn

∂t
, r

(
xn −Kn +

cn

r

)}
− cn.

If we define an auxiliary function, V n(xn, t) ≡ Vn(xn, t) + cn/r, the HJB in the continuation region can be written as

[r + λn(t)]V n = λn(t)
cn

r
+ µn

∂V n

∂xn
+

1
2
σ2
n

∂2V n

∂x2
n

+
∂V n

∂t
.

Value matching and smooth pasting then require V n (βn(t), t) = βn(t) − Kn + cn/r and ∂V n (βn(t), t) /∂xn = 1. Under

this new formulation, the optimal stopping problem is analogous to the previous version, but has a flow payoff externality

of λn(t)cn/r, which has the interpretation of a possible saving of the net present value of all future running costs that

occurs with time-varying intensity λn(t). One can then show that βn(t) ∈
[
Kn − cn/r, βMn (t)

]
, where βMn (t) is the optimal

threshold for Player n in the absence of any competition. The asymptotic results would follow, again, after accounting for

the change in the HJB and boundary conditions.

Once an abandonment option is introduced, another endogenous threshold needs to be derived. For sufficiently low

states, a player finds it optimal to drop out. Because of the non-stationarity in the intensity of competition, this additional

threshold is time varying in general, in the same way as the optimal exercise threshold. Again, we can construct the

stationary limit for beliefs, conditional on both no previous exercise and no abandonment by each active player.26 The

methods to study the transitions developed in Sections 3 and 4 can be extended as well. In particular, the equilibrium

would again be characterized by a coupled system of differential equations. In this system, backward-looking conditional

beliefs take into account the absence of either exercise or abandonment by each of the active players. At the same time,

forward-looking value functions take into account the defeat and abandonment rates by each opponent. The key difference

in this case is that the list of still-active opponents needs to be incorporated as an additional state variable.

26Notice that we assume players would observe the abandonment by any opponent. In contrast, if abandonment was not
observable and players solely conditioned in the absence of exercise, perceived competition would vanish in the long-run. A
non-degenerate limit distribution would be recovered if new opponents also entered the competition without being observed.
This last feature is present in Bobtcheff and Mariotti (2012).
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C.4. Correlation and public states. Unlike the previous extensions, allowing for correlation in the evolution of the

individual payoffs introduces major difficulties. In the original setting, the defeat rate is a simple function of time. A

player’s own payoff position and its previous path are not informative about the intensity of opposition she will face in the

future. In contrast, correlation creates a linkage between one’s own payoff evolution and the expected future competition.

In principle, the defeat rate at time t becomes a function of the whole past trajectory of X(s), for s ≤ t. Extending the

current techniques to deal with this non-Markov structure is a challenge left for future work.
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Supplementary Material

This document contains supplementary material to “Competitive Real Options Under Private Information”, by Felipe

S. Iachan and Leandro Gorno. It contains a brief description of the numeric algorithm that computes equilibria, proofs that

are too long for the main manuscript, and some additional elementary properties of the equilibrium value functions.

Appendix S1. Outline of the Equilibrium Computation Algorithm.

We describe here the algorithm that computes the symmetric equilibria in Section (4), for simplicity. Asymmetries and

comparative dynamics, as described in Sections (4.1 to S5), are analogous.

Initialization:

Variables are initialized. The initial guess for the defeat rate is zero, as if no competition was present. The value

function will be computed within a finite two-dimensional (x, t)-grid that represents profitability upon current exercise

and time. Upper and lower extremes along the profitability dimension are defined as follows. For the upper extreme, a

monopolist’s exercise threshold is used. A boundary condition from the monopolist’s value is imposed and will be used

for the computation of a free boundary, that lies below it and within the grid, along the loop that follows. On the lower

extreme, a tolerance value, when the monopolist’s value becomes sufficiently small is imposed. As a boundary condition, a

constant fraction multiple of the monopolist’s value is used. The time dimension is also truncated from the right. A critical

time T , which is treated as terminal, is defined. We impose that the value function at that time is the one of an agent that

faces a constant hazard-rate of defeat given by the asymptotic value obtained in Section 3.5.

Inside the main loop:i) The value function and threshold are updated: we use the Crank-Nicholson algorithm and a

free-boundary update procedure derived in Muthuraman (2008), adapted to deal with a call option as opposed to a put

option. The algorithm proceeds recursively from the T vector towards the initial position in time. The algorithm adapted

from Muthuraman (2008) involves an inner loop, which relies on the slope of the value function and converges monotonically

(from above in the call-option case) towards the free boundary that solves the optimal exercise problem given current input

of the defeat rate.

ii) Given the computed threshold, the absorption CDF, Γ(t), is computed in the same time grid using a discretization of

Γn
(
s|x0

n

)
= 1− Φ

(
βn(s)− x0

n − µn (s− t)
σn
√
s

)
−
ˆ t

0
Φ
(
βn(s)− βn(h)− µn (s− h)

σn
√
s− h

)
Γn(dh|x0

n),

an alternative way of writing Equation 25. The discretized version of this recursive system can be represented through

a diagonal matrix, which is easily inverted. The density and the exercise rate are obtained numerically from the CDF

obtained by this procedure. Given symmetry, the exercise and defeat rates are the same.

iii) A distance metric is computed, based on the largest absolute change of the threshold between the previous condition

and the iteration from (ii.i). When this distance is below a tolerance value, the loop is interrupted.

To reduce the influence of the terminal condition, we restrict attention to the behavior of the solution between the initial

date and some value T1 << T .

Appendix S2. Proof of Proposition 5.

The proof of Proposition 5 is organized through a number of lemmas, which for convenience are organized in subsections.

For the rest of this section, we fix an equilibrium with associated value-threshold pairs {Vn, βn}n∈N . By Assumption 1,

there is positive probability of the game continuing after t = 0 (and, in fact, after any t ≥ 0). As a result, we can safely

ignore those paths of play along which the game is stopped at t = 0, as they are irrelevant for future equilibrium behavior.

S2.1. Convergence of Λn(t, h). A key component in the proof of Proposition 5 is the generalization of Lemma 4 to more

general priors. In general, the defeat rate integrals

Λn(t, h) ≡ − ln
(

1−G[−n](t+ h)
1−G[−n](t)

)
=
ˆ h

0
λn(t+ s)ds
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that Player n faces are asymptotically linear in h, with a limit slope that is independent of the transient dynamics or the

prior, provided that the latter satisfies Assumption 1. Our proof of this fact comprises four lemmas.

Lemma 5. Let ν be a probability measure on R, let S ⊆ R be a ν-measurable set such that ν(S) > 0, and let f, g : R+×S →

(0,+∞) be measurable in the second argument. Suppose further that there exist functions A,B : S → (0,+∞) satisfying

lim
t→+∞

(
f(t, x)
g(t, y)

)
=
A(x)
B(y)

for all x, y ∈ S. Finally, assume that either ν has compact support or there exist functions L,U : S × S → (0,+∞) such

that

L(x, y) ≤
g(t, y)
f(t, x)

≤ U(x, y)

for all x, y ∈ S and t ≥ 0 and satisfy the integrability conditions
´
S

(´
S L(x, y)ν(dy)

)−1
ν(dx) < +∞ and

´
S U(x, y)ν(dy) <

+∞ for all x ∈ S. Then, we have

lim
t→+∞

( ´
S f(t, x)ν(dx)´
S g(t, y)ν(dy)

)
=
´
S A(x)ν(dx)´
S B(y)ν(dy)

.

Proof. It is easy to verify that:
´
S A(x)ν(dx)´
S B(y)ν(dy)

=
ˆ
S

(
A(x)´

S B(y)ν(dy)

)
ν(dx) =

ˆ
S

[ˆ
S

(
B(y)
A(x)

)
ν(dy)

]−1
ν(dx).

The assumptions imply that B(y)/A(x) = limt→+∞ g(t, y)/f(t, x) for all x, y ∈ S. Note that, if ν has compact support,

the convergence of the ratio g/f as t → +∞ is uniform on the support of ν. Given the assumptions on ν, the dominated

convergence theorem implies that
´
S (B(y)/A(x)) ν(dy) = limt→+∞

´
S (g(t, y)/f(t, x)) ν(dy). It follows that

ˆ
S

[ˆ
S

(
B(y)
A(x)

)
ν(dy)

]−1
ν(dx) =

ˆ
S

[
lim

t→+∞

ˆ
S

(
g(t, y)
f(t, x)

)
ν(dy)

]−1
ν(dx),

=
ˆ
S

lim
t→+∞

[ˆ
S

(
g(t, y)
f(t, x)

)
ν(dy)

]−1
ν(dx),

=
ˆ
S

lim
t→+∞

(
f(t, x)´

S g(t, y)ν(dy)

)
ν(dx).

Applying again the dominated convergence theorem, we obtain

ˆ
S

lim
t→+∞

(
f(t, x)´

S g(t, y)ν(dy)

)
ν(dx) = lim

t→+∞

ˆ
S

(
f(t, x)´

S g(t, y)ν(dy)

)
ν(dx).

Combining these equalities and rearranging, we obtain
´
S A(x)ν(dx)´
S B(y)ν(dy)

= lim
t→+∞

( ´
S f(t, x)ν(dx)´
S g(t, y)ν(dy)

)
as desired. �

We will next prove a lemma on the geometry of the class of initial distributions that induce equivalent asymptotic

conditional absorption. Fix a bounded moving boundary β and let Γ(t|ν) be the probability that the first-passage through

β occurs in the interval [0, t] when the initial condition is distributed according to a probability measure ν.

Lemma 6. Fix h > 0 and let ν1 and ν2 be two probability measures concentrated on (−∞, β(0)) such that

lim
t→+∞

(1− Γ(t+ h|ν1)
1− Γ(t|ν1)

)
= lim
t→+∞

(1− Γ(t+ h|ν2)
1− Γ(t|ν2)

)
= e−ηh.

Then,

lim
t→+∞

(1− Γ(t+ h|ν)
1− Γ(t|ν)

)
= e−ηh

for every ν that is a convex combination of ν1 and ν2.
S.2



Proof. For every α ∈ (0, 1) and ν = αν1 + (1− α)ν2, we have

1− Γ(t+ h|ν)
1− Γ(t|ν)

=
α [1− Γ(t+ h|ν1)] + (1− α) [1− Γ(t+ h|ν2)]

α [1− Γ(t|ν1)] + (1− α) [1− Γ(t|ν2)]
,

=
1− Γ(t+ h|ν2)

1− Γ(t|ν2)
+
( 1

1 +M

)(1− Γ(t+ h|ν1)
1− Γ(t|ν1)

−
1− Γ(t+ h|ν2)

1− Γ(t|ν2)

)
,

for every t ≥ 0 and h ≥ 0, where M ≡
(

α
1−α

) ( 1−Γ(t|ν2)
1−Γ(t|ν1)

)
> 0. This implies∣∣∣1− Γ(t+ h|ν)

1− Γ(t|ν)
−

1− Γ(t+ h|ν2)
1− Γ(t|ν2)

∣∣∣ ≤ ∣∣∣1− Γ(t+ h|ν1)
1− Γ(t|ν1)

−
1− Γ(t+ h|ν2)

1− Γ(t|ν2)

∣∣∣ .
Since limt→+∞

∣∣ 1−Γ(t+h|ν1)
1−Γ(t|ν1) −

1−Γ(t+h|ν2)
1−Γ(t|ν2)

∣∣ =
∣∣e−ηh − e−ηh∣∣ = 0, it follows that limt→+∞

∣∣ 1−Γ(t+h|ν)
1−Γ(t|ν) −

1−Γ(t+h|ν2)
1−Γ(t|ν2)

∣∣ =

0. We conclude that

lim
t→+∞

1− Γ(t+ h|ν)
1− Γ(t|ν)

= lim
t→+∞

1− Γ(t+ h|ν2)
1− Γ(t|ν2)

= e−ηh

as desired. �

Consider a generalized Brownian motion with drift coefficient µ > 0 and volatility coefficient σ > 0. Let Γ0(t|x) denote

the probability of first-passage through 0 in the interval [0, t] when the initial state is x < 0 almost surely. Define the

associated density γ0(t|x) ≡ dΓ0(t|x)/dt and hazard rate η0(t|x) ≡ γ0(t|x)
1−Γ0(y|x) .

Lemma 7. For all t ≥ 0 and x, y ∈ (−∞, 0), we have

min
{

1, e
µ

σ2 (y−x)
(
x

y

)}
≤

1− Γ0(t|x)
1− Γ0(t|y)

≤ max
{

1, e
µ

σ2 (y−x)
(
x

y

)}
.

Proof. Fixing x, y ∈ (−∞, 0), define M : [0,+∞)→ (0,+∞) by setting

M(t) :=
1− Γ0(t|x)
1− Γ0(t|y)

for each t ≥ 0. The claim holds trivially when x = y, so we restrict attention to the case in which x 6= y. limt↓0 Γ0(t|y) = 0

implies that limt↓0M(t) = 1. Moreover,

lim
t→+∞

M(t) = lim
t→+∞

(
γ0(t|x)
γ0(t|y)

)
= e

µ

σ2 (y−x)
(
x

y

)
.

This means that M can be continuously extended to the domain [0,+∞]. It follows that M attains a global maximum

and a global minimum on [0,+∞]. Thus, to establish the claim, it suffices to show that global extrema must lie at either

t = 0 or t = +∞. Note that M is continuously differentiable at t ∈ (0,+∞) and M ′(t) = M(t) [η0(t|y)− η0(t|x)]. Suppose

that M attains a local extremum at t∗ ∈ (0,+∞). Since M ′(t∗) = 0 and M(t∗) > 0, we must have η0(t∗|y) = η0(t∗|x). It

follows that

M(t∗) =
1− Γ0(t∗|x)
1− Γ0(t∗|y)

=
γ0(t∗|x)/η0(t∗|x)
γ0(t∗|y)/η0(t∗|y)

=
γ0(t∗|x)
γ0(t∗|y)

= e
y2−x2

2σ2t∗
+α(y−x)

(
x

y

)
= e

y2−x2

2σ2t∗ M(+∞).

Note also that

M ′′(t∗) = M ′(t∗) [η0(t∗|y)− η0(t∗|x)] +M(t∗)
[
∂η0(t∗|y)

∂t
−
∂η0(t∗|x)

∂t

]
,

= M(t∗)
[
∂η0(t∗|y)

∂t
−
∂η0(t∗|x)

∂t

]
.

Differentiating and using η0(t∗|y) = η0(t∗|x), we obtain

∂η0(t∗|y)
∂t

= η0(t∗|y)

(
η0(t∗|y) +

∂γ0(t∗|y)
∂t

γ0(t∗|y)

)
=
∂η0(t∗|x)

∂t
+ η0(t∗|x)

(
∂γ0(t∗|y)

∂t

γ0(t∗|y)
−

∂γ0(t∗|x)
∂t

γ0(t∗|x)

)
.
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Noting that

∂γ0(t∗|y)
∂t

γ0(t∗|y)
−

∂γ0(t∗|x)
∂t

γ0(t∗|x)
=

1
2

[(
y

σt∗

)2
−
µ2

σ2 −
3
t∗

]
−

1
2

[(
x

σt∗

)2
−
µ2

σ2 −
3
t∗

]
=

1
2

( 1
σt∗

)2 (
y2 − x2

)
it follows that M ′′(t∗) = 1

2 (σt∗)−2 M(t∗)η0(t∗|x)
(
y2 − x2

)
. Now suppose, seeking a contradiction, that M attains a

global maximum at t∗. Then, M ′′(t∗) ≤ 0, which implies y2 ≤ x2. Considering that x 6= y and x, y < 0, it follows that

y2 < x2 and, so, that e
y2−x2

2σ2t∗ < 1. This implies that M(t∗) < M(+∞), a contradiction. The case in which M attains a

global minimum at t∗ is dealt with using a symmetric argument. We conclude that M does not possess global extrema at

t∗ ∈ (0,+∞), as desired. �

Lemma 8. For all t ≥ 0, h ≥ 0, and x ∈ (−∞, 0), we have

e−η(x)h ≤
1− Γ0(t+ h|x)

1− Γ0(t|x)
≤ 1,

where we defined η(x) ≡ η + 9
8

(
σ
x

)2
with η ≡ µ2

2σ2 .

Proof. The upper bound is trivial since Γ0(t+ h|x) ≥ Γ0(t|x) for all t ≥ 0, h ≥ 0, and x ∈ (−∞, 0). For the lower bound,

note that

η0(t|x) =
γ0(t|x)

1− Γ0(t|x)
= −

∂ ln [1− Γ0(t|x)]]
∂t

and thus 1−Γ0(t+h|x)
1−Γ0(t|x) = e−

´ t+h
t

η0(s|x)ds. It is straightforward to compute ∂η0(t|x)
∂t

= η0(t|x)
(
η0(t|x) + 1

γ0(t|x)
∂γ0(t|x)

∂t

)
.

It follows that any interior extremum at t = t∗ must yield a value of

η0(t∗|x) = −
∂γ0(t∗|x)

∂t

γ0(t∗|x)
= η +

1
2

[
3
t
−

1
t2

(
x

σ

)2
]
.

Since supt∈(0,+∞)

[
3
t
− 1
t2

(
x
σ

)2]
= 9

4

(
σ
x

)2
, we have η0(t∗|x) ≤ η+ 9

8

(
σ
x

)2
. Since limt↓0 η0(t|x) = 0 and limt→+∞ η0(t|x) =

η, we conclude that η0(t|x) ≤ η + 9
8

(
σ
x

)2
for all t ≥ 0 and x < 0. The desired conclusion follows immediately from this

uniform bound on the conditional absorption rate:

1− Γ0(t+ h|x)
1− Γ0(t|x)

≥ e−
´ t+h
t

[
η+ 9

8 (σx )2
]
ds = e

−
[
η+ 9

8 (σx )2
]
h
.

�

Lemma 9. Let ν be a probability measure concentrated on (−∞, β(0)) such that
´ 0
−∞ eα|x| |x| ν(dx) < +∞. Then, for all

h > 0, we have

lim
t→+∞

(1− Γ(t+ h|ν)
1− Γ(t|ν)

)
= e−ηh.

Proof. Define

h(x, y) := inf
{
s ∈ R

∣∣∣ lim
t→+∞

(1− Γ(t+ s|y)
1− Γ(t|x)

)
≤ 1
}
.

Clearly, h(x, y) ≥ 0 if and only if x ≥ y. In fact, h(x, y) is increasing in x and decreasing in y. Moreover, by continuity of

Γ in time, we also have limt→+∞
( 1−Γ(t+h(x,y)|y)

1−Γ(t|x)

)
= 1. Then,

lim
t→+∞

(1− Γ(t|x)
1− Γ(t|y)

)
= lim
t→+∞

(1− Γ(t+ h(x, y)|y)
1− Γ(t|y)

)
= e−ηh(x,y).

This implies

e−ηh(x,z) = lim
t→+∞

(1− Γ(t|x)
1− Γ(t|z)

)
= lim
t→+∞

[(1− Γ(t|x)
1− Γ(t|y)

)(1− Γ(t|y)
1− Γ(t|z)

)]
,

=
[

lim
t→+∞

(1− Γ(t|x)
1− Γ(t|y)

)][
lim

t→+∞

(1− Γ(t|y)
1− Γ(t|z)

)]
,

= e−ηh(x,y)e−ηh(y,z) = e−η[h(x,y)+h(y,z)].
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It follows that, for all x, y, z ∈ R, we have h(x, z) = h(x, y) + h(y, z). By setting z = 0 and defining A(x) := h(x, 0), we can

write h(x, y) = A(x)−A(y). It follows that

lim
t→+∞

(1− Γ(t|x)
1− Γ(t|y)

)
=
e−ηA(x)

e−ηA(y) .

Moreover, for all h > 0, we have

lim
t→+∞

(1− Γ(t+ h|x)
1− Γ(t|y)

)
= lim
t→+∞

(1− Γ(t+ h|x)
1− Γ(t|x)

)
lim

t→+∞

(1− Γ(t|x)
1− Γ(t|y)

)
=
e−η[A(x)+h]

e−ηA(y) .

Note that, since h(x, y) is increasing in x, the function A must be increasing.

Assume for a second that the conditions for Lemma 5 hold. Then, we can easily obtain

lim
t→+∞

(1− Γ(t+ h|ν)
1− Γ(t|ν)

)
= lim
t→+∞

( ´ β(0)
−∞ [1− Γ(t+ h|x)] ν(dx)´ β(0)
−∞ [1− Γ(t|y)] ν(dy)

)
=
´ β(0)
−∞ e−η[A(x)+h]ν(dx)´ β(0)
−∞ e−ηA(y)ν(dy)

,

= e−ηh

( ´ β(0)
−∞ e−ηA(x)ν(dx)´ β(0)
−∞ e−ηA(y)ν(dy)

)
= e−ηh,

as desired. Now we turn to verify the conditions of Lemma 5.

Without loss we can write ν = pν1 + (1 − p)ν2, where p := ν ([k,+∞)) and ν1, ν2 are probability measures defined by

setting ν1(E) := p−1ν (E ∩ [k,+∞)), and ν2(E) := (1 − p)−1ν (E ∩ (−∞, k)) for every measurable set E ⊆ R. Note that

ν1 has compact support, while ν2 is concentrated on (−∞, k) and satisfies the same tail conditions as ν.

By Lemma 6, there is no loss of generality if we assume that either p = 1 or p = 0. If p = 1, then ν has compact sup-

port and Lemma 5 applies. If p = 0, then for each h > 0, x, y ∈ S := (−∞, k) define f(t, x) := 1−Γ(t+h|x) and g(t, y) := 1−

Γ(t|y), as well as L(x, y) := min
{

1, eµσ−2(x−y+k−m)
(
y−k
x−m

)}
and U(x, y) := eη(x−k)h max

{
1, eµσ−2(x−y+m−k)

(
y−m
x−k

)}
.

Note that k ≤ β(t) ≤ m for all t ≥ 0 implies

1− Γk(t|y)
1− Γm(t+ h|x)

≤
1− Γ(t|y)

1− Γ(t+ h|x)
≤

1− Γm(t|y)
1− Γk(t+ h|x)

.

Moreover, Lemma 7 and Lemma 8 imply that

1− Γk(t|y)
1− Γm(t+ h|x)

=
1− Γ0(t|y − k)

1− Γ0(t+ h|x−m)
=

1−Γ0(t|y−k)
1−Γ0(t|x−m)

1−Γ0(t+h|x−m)
1−Γ0(t|x−m)

≥ L(x, y)

and
1− Γm(t|y)

1− Γk(t+ h|x)
=

1− Γ0(t|y −m)
1− Γ0(t+ h|x− k)

=
1−Γ0(t|y−m)
1−Γ0(t|x−k)

1−Γ0(t+h|x−k)
1−Γ0(t|x−k)

≤ U(x, y)

for all t ≥ 0, h ≥ 0, and x, y ∈ S. We conclude that L(x, y) ≤ g(t, y)/f(t, x) ≤ U(x, y) so, in order to apply Lemma 5, we

only need to verify the integrability conditions. On the one hand,
ˆ
S
U(x, y)ν(dy) =

ˆ
S
eη(x−k)h max

{
1, eµσ

−2(x−y+m−k)
(
y −m
x− k

)}
ν(dy),

= eη(x−k)h
[ˆ k

min{x+m−k,k}
ν(dy) +

ˆ min{x+m−k,k}

−∞
eµσ
−2(x−y+m−k)

(
y −m
x− k

)
ν(dy)

]
,

= A+B

ˆ min{x+m−k,k}

−∞
e−µσ

−2y (m− y) ν(dy),

where A ≡ eη(x−k)hν ((min{x+m− k, k}, k)) ∈ [0,+∞) and B ≡ (k − x)−1 eη(x−k)h+µσ−2(x+m−k) ∈ [0,+∞). It is easy

to show that
´min{x+m−k,k}
−∞ e−µσ

−2y (m− y) ν(dy) < +∞ is equivalent to
´ 0
−∞ eα|y| |y| ν(dy) < +∞, which holds by
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assumption. It follows that
´
S U(x, y)ν(dy) < +∞. On the other hand,

ˆ
S
L(x, y)ν(dy) =

ˆ x+k−m

−∞
ν(dy) +

ˆ k
x+k−m

eµσ
−2(x−y+k−m)

(
k − y
m− x

)
ν(dy),

≥
( 1
m− x

)
eµσ
−2(x+k−m)

ˆ k
0
e−µσ

−2y (k − y) ν(dy),

where we used x+k−m < 0. Note that C :=
´ k
0 e−αy (k − y) ν(dy) is a finite positive number, independent of x. It follows

that ˆ
S

(ˆ
S
L(x, y)ν(dy)

)−1
ν(dx) ≤

( 1
C

)
eµσ
−2(m−k)

ˆ
S
e−µσ

−2x (m− x) ν(dx).

It is easy to show that
´
S e
−µσ−2x (m− x) ν(dx) < +∞ is equivalent to

´ 0
−∞ eµσ

−2|x| |x| ν(dx) < +∞, which is true by

assumption. This completes the proof. �

S2.2. Convergence of values. The next result establishes that equilibrium payoffs converge pointwise.

Lemma 10. For every n ∈ N and x ∈ R, we have limt→+∞ Vn(xn, t) = V ∗n (xn).

Proof. Let Un(xn, t, βn) be the payoff of Player n when her state is x at time t by playing continuation threshold βn :

[0,+∞) → [Kn, βn] and he or she has a discount factor e−rh−Λn(t,h) ≥ 0 from time t to time t + h. Let U∗n(xn, βn)

the payoff that a monopolist with discount rate r + λ∗n obtains at state x when playing continuation threshold βn. Let

Vn(xn, t) ≡ supβn Un(xn, t, βn) and V ∗n (x) ≡ supβn U
∗
n(xn, βn). Note that both suprema are attained.

We claim that, for every xn ∈ R and βn : [0,+∞)→ [Kn, βn], we have limt→+∞ Un(xn, t, βn) = U∗n(xn, βn). To prove

this, note that we can write

Un(xn, t, βn) =
ˆ +∞

0
e−rh−Λn(t,h) [βn(h)−Kn] Γ(dh|x, βn),

where Γ(h|xn, βn) is the mass the crosses boundary βn in the interval [0, h]. Since
∣∣e−Λn(t,h) [βn(h)−Kn]

∣∣ ≤ βn − Kn
and limt→+∞ Λn(t, h) = λ∗nh pointwise in h by Lemma 4, the dominated convergence theorem implies

lim
t→+∞

Un(xn, t, βn) =
ˆ +∞

0
e−(r+λ∗n)h [βn(h)−Kn] Γ(dh|x, βn) = U∗n(xn, βn),

proving the claim.

To establish the main result, it suffices to show lim inft→+∞ Vn(xn, t) ≥ V ∗n (xn) ≥ lim supt→+∞ Vn(xn, t). Let β̂n(t)

be a threshold that attains Vn(xn, t) and let β∗n be the constant threshold that attains V ∗n (xn). On the one hand,

Vn(xn, t) = Un(xn, t, β̂n(t)) ≥ Un(xn, t, β∗n).

Since limt→+∞ Un(xn, t, β∗n) = U∗n(xn, β∗n) by the argument above, we have

lim inf
t→+∞

Vn(xn, t) ≥ lim
t→+∞

Un(xn, t, β∗n) = U∗n(xn, β∗n) = V ∗n (xn).

On the other hand, we can compute

Vn(xn, t) = Un(xn, t, β̂n(t)) ≤ V ∗n (xn) +
ˆ ∞

0
gn(t, h)Γ(dh|xn, β̂n),

where we define

gn(t, h) ≡
[
β̂n(h)− k

] [
e−rh−Λn(t,h) − e−(r+λ∗n)h

]
.

Note that, for all t, h ∈ R+, we have

|gn(t, h)| ≤
∣∣β̂n(h)− k

∣∣ e−rh ∣∣e−Λn(t,h) − e−λ
∗
nh
∣∣ ≤ βn −Kn.
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Hence, since limt→+∞ Λn(t, h) = λ∗nh pointwise in h, the dominated convergence theorem implies limt→+∞
´∞
0 gn(t, h)Γ(dh|xn, β̂) =

0.It follows that

lim sup
t→+∞

Vn(xn, t) ≤ V ∗n (xn) + lim
t→+∞

ˆ ∞
0

gn(t, h)Γ(dh|xn, β̂) = V ∗n (xn),

completing the proof. �

The following result establishes that the convergence is, in fact, uniform.

Lemma 11. For every n ∈ N and x ∈ R, we have limt→+∞ supxn∈R |Vn(xn, t)− V ∗n (xn)| = 0.

Proof. Lemmas 19 and 18 show that Vn(·, t) and V ∗n are increasing and continuous. A standard real analysis argument

shows that, in this case, pointwise convergence implies uniform convergence on compact sets. Since Vn(xn, t) = V ∗n (xn)

for all xn ≥ βn by Lemma 17, uniform convergence holds for all sets of the form [a,+∞). Since limx→−∞ Vn(xn, t) =

limx→−∞ V ∗n (xn) = 0, we can extend continuously the functions to [−∞,+∞). It follows that uniform convergence holds

on R. �

S2.3. Convergence of λn(t). The following result shows that, under certain regularity conditions, the perceived rate of

arrival of defeat converges for all players.

Lemma 12. Suppose that Assumption 2 holds. Then, for every player n ∈ N , we have limt→+∞ λn(t) = λ∗n.

Proof. By the second fundamental theorem of calculus, we have

Λn(t, h) =
ˆ h

0
λn(t+ s)ds =

ˆ h
0

[
λn(t) +

ˆ s
0

dλn(t+ u)
du

du

]
ds.

Let M ≡ supt≥0 |dλn(t)/dt|. Note that∣∣∣λn(t)−
Λn(t, h)

h

∣∣∣ ≤ 1
h

∣∣∣∣ˆ h0 ˆ s0 dλn(t+ u)
du

duds

∣∣∣∣ ≤ 1
h

ˆ h
0

ˆ s
0

∣∣∣dλn(t+ u)
du

∣∣∣ duds ≤ 1
h

ˆ h
0

ˆ s
0
Mduds =

Mh

2
.

It follows that

lim
h↓0

sup
t≥0

∣∣∣λn(t)−
Λn(t, h)

h

∣∣∣ ≤ lim
h↓0

(
Mh

2

)
= 0.

This means that, Λn(t, h)/h converges uniformly (in t) to λn(t) as h ↓ 0. Therefore, we have

lim
t→+∞

λn(t) = lim
t→+∞

lim
h↓0

(Λn(t, h)
h

)
= lim
h↓0

lim
t→+∞

(Λn(t, h)
h

)
= λ∗n,

where the exchange in the order of the limit follows from the Moore-Osgood theorem and limt→+∞(1/h)Λn(t, h) = λ∗n

follows from Lemma 4. This completes the proof. �

S2.4. Convergence of βn(t). The following result shows that convergence of λn(t) as t → ∞ implies convergence of the

associated optimal threshold. Note that this result is about a property of the best-response and is true for any trajectory

of λn(t) (not necessary an equilibrium one).

Lemma 13. Suppose limt→∞ λn(t) = λn and let βn be the optimal exercise of a monopolist with constant discount rate

r + λn. Then, limt→+∞ βn(t) = βn.

Proof. Define λHn (t) ≡ suph≥0 λn(t + h) and let βHn (t) be the optimal exercise threshold of a monopolist with a constant

discount rate r+λHn (t) for all future times after t. For every t, h ≥ 0, we have λn(t+h) ≤ λHn (t), which implies βn(t) ≥ βHn (t).

Moreover, since limt→∞ λn(t) = λn, we know limt→∞ λH(t) = lim supt→∞ λn(t) = λn. Because the optimal exercise

threshold of a monopolist is continuous in his or her effective discount rate, it follows that limt→∞ βHn (t) = βn. Similarly,

define λLn(t) ≡ infh≥0 λn(t + h) and let βLn (t) be the optimal exercise threshold of a monopolist with a constant discount

rate r + λLn for all future times after t. For every t, h ≥ 0, we have λn(t + h) ≥ λLn(t), which implies βn(t) ≤ βLn (t).

Moreover, since limt→∞ λn(t) = λn, we know limt→∞ λLn(t) = lim inft→∞ λn(t) = λn. It follows that limt→∞ βLn (t) = βn.

A sandwich argument completes the proof. �
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S2.5. Convergence of conditional beliefs. We now turn to prove the convergence of conditional beliefs. This is a

“mechanical” consequence of convergence of η(t) and β(t), that does not depend on optimization. Because of this, we fix a

player n ∈ N throughout this subsection and state the result as an independent proposition.

Proposition 8. Suppose ηn and βn satisfy

lim
t→+∞

ηn(t) = ηn, lim
t→+∞

βn(t) = βn,

and let Fn be the CDF of the (unique) quasi-stationary distribution with density fn associated with the pair (ηn, βn) in

Equation 19. Then, the family of conditional beliefs
{
F̂n(·, t)

}
t≥0

associated with (ηn, βn) satisfies

lim
t→+∞

F̂n(xn, t) = Fn(xn)

for all xn ∈ R.

The proof of this result requires a few additional lemmas. For every ω ∈ R, define M(ω) ≡ 1
2σ

2
nω

2 − iµnω.

Lemma 14. If ψ(·, t) denotes the characteristic function of F̂n(·, t), then

ψ(ω, t) =
e−M(ω)t

[
ψ(ω, 0)−

´ t
0 e

M(ω)s+iωβn(s)Γn(ds)
]

1− Γn(t)

for all ω ∈ R and t ≥ 0.

Proof. It is well-known that f̂n = ∂F̂n/∂xn exists and satisfies the modified Kolmogorov forward equation

∂f̂n

∂t
= −µn

∂f̂n

∂xn
+

1
2
σ2
n

∂2f̂n

∂x2
n

+ ηn(t)f̂n.

It follows that ˆ βn(t)

−∞
eiωxn

[
−µn

∂f̂n

∂xn
+

1
2
σ2
n

∂2f̂n

∂x2
n

+ ηn(t)f̂n −
∂f̂n

∂t

]
dxn = 0.

From this relation, we can fix ω and derive a differential equation for the function t→ ψ(ω, t):

∂ψ

∂t
= [ηn(t)−M(ω)]ψ − ηn(t)eiωβn(t).

Noting that ψ(ω, 0) =
´ βn(0)
−∞ eiωxn F̂n(dxn, 0) is given, we can obtain the following (unique) solution for the associated

initial value problem:

ψ(ω, t) = e
´ t

0 [ηn(s)−M(ω)]dsψ(ω, 0)−
ˆ t

0
e
´ t
s [ηn(h)−M(ω)]dhλn(s)eiωβn(s)ds.

Recalling that Γn(t) = 1− e−
´ t

0 ηn(s)ds, we can write

ψ(ω, t) =
e−M(ω)tψ(ω, 0)

1− Γn(t)
−
ˆ t

0
ηn(s)

(1− Γn(s)
1− Γn(t)

)
e−M(ω)(t−s)+iωβn(s)ds.

Noting that ηn(s) [1− Γn(s)] = γn(s) for all s ∈ [0, t], the claim follows immediately. �

The next lemma describes the characteristic function of the quasi-stationary distribution.

Lemma 15. If ζ is the characteristic function of the quasi-stationary distribution associated to (ηn, βn), then

ζ(ω) =
eiωβnηn
ηn −M(ω)

for every ω ∈ R.

Proof. Direct computation. �
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Lemma 16. There exists ω0 > 0 such that limt→+∞ ψ(ω, t) = ζ(ω) for every ω ∈ (−ω0, ω0).

Proof. Note that, if ω = 0, we have ψ(0, t) = 1 = ζ(0) for all t ≥ 0. So, suppose for the rest of the proof that ω 6= 0. Using

the representation in Lemma 14, we have ψ(w, t) = A(t)/B(t), where we define A(t) ≡ ψ(ω, 0)−
´ t
0 e

M(ω)s+iωβn(s)Γn(ds)

and B(t) ≡ eM(ω)t [1− Γn(t)]. Note that |B(t)| = e
1
2σ

2
nω

2t [1− Γn(t)] and define ω0 ≡
√

2ηn/σn > 0. For ω ∈ (−ω0, ω0),

we have

lim
t→+∞

|B(t)| ≤ lim
t→+∞

e
1
2σ

2
nω

2t
[
1− Γn(t)

]
= 0.

Since |ψ(ω, t)| ≤ 1, we have |A(t)| = |ψ(ω, t)||B(t)| ≤ |B(t)|. It follows that limt→+∞ |A(t)| ≤ limt→+∞ |B(t)| = 0. We

now verify the Condition I in Carter (1958) to apply L’Hôpital. Since limt→+∞ ηn(t) = ηn and ω ∈ (−ω0, ω0), for all

sufficiently large t,
d|B(t)|
dt

= e
1
2σ

2
nω

2t [1− Γn(t)]
(1

2
σ2
nω

2 − ηn(t)
)
< 0.

Moreover, ∣∣∣dB(t)
dt

∣∣∣ =
∣∣eM(ω)t [1− Γn(t)] (M(ω)− ηn(t))

∣∣ = e
1
2σ

2
nω

2t [1− Γn(t)]
∣∣∣12σ2

nω
2 − ηn(t)− µnωi

∣∣∣ .
It follows that ∣∣ dB(t)

dt

∣∣
d|B(t)|
dt

=

∣∣ 1
2σ

2
nω

2 − ηn(t)− µnωi
∣∣

1
2σ

2
nω

2 − ηn(t)

and so

lim
t→+∞

∣∣ dB(t)
dt

∣∣
d|B(t)|
dt

= −

∣∣ 1
2σ

2
nω

2 − ηn − µnωi
∣∣∣∣ 1

2σ
2
nω

2 − ηn
∣∣ = −

∣∣∣∣1 +
µnω

ηn − 1
2σ

2
nω

2
i

∣∣∣∣ ∈ R.

This ensures that
∣∣ dB(t)

dt

∣∣ / d|B(t)|
dt

is bounded for all sufficiently large t. Note that

dA(t)
dt

dB(t)
dt

=
−eM(ω)t+βn(t)ωiγn(t)

eM(ω)t {M(ω) [1− Γn(t)]− γn(t)}
=
eβn(t)ωiηn(t)
ηn(t)−M(ω)

.

It follows by L’Hôpital that

lim
t→+∞

ψ(ω, t) = lim
t→+∞

( dA(t)
dt

dB(t)
dt

)
= lim
t→+∞

(
eβn(t)ωiηn(t)
ηn(t)−M(ω)

)
=

eβnωiηn
ηn −M(ω)

= ζ(ω),

as claimed. �

Proof of Proposition 8. The modification of Lévy continuity theorem by Zygmund (1951) establishes that pointwise con-

vergence in a fixed open interval containing zero of the characteristic functions associated to a family of non-negative

random variables is sufficient for convergence in distribution. Of course, this result remains unaltered if we substitute the

non-negativity requirement for any uniform lower or upper bound.

By Lemma 16, ψ(ω, t) converges to ζ(ω) as t→ +∞ for all ω in an open interval around 0. Since the support of every

distribution in the family {F̂n(·, t)}t≥0 is bounded above by the monopolist threshold, βn, Zygmund’s theorem implies that

limt→∞ F̂n(xn, t) = Fn(xn) for all x ∈ R at which Fn is continuous. It is straightforward to check that Fn is continuous

everywhere. Therefore, the proof is complete. �

S2.6. Proof of Proposition 5. (1) is implied by Lemma 10. Given Assumption 2, (3) follows from Lemma 12. (2) is

implied by (3) and Lemma 13. Finally, (4) is obtained from combining Proposition 8 with (2) and (3).

Appendix S3. Proofs of Results in Appendix B

Proof of Proposition 6. Fn(xn, t) counts all the Brownian paths which lie in (−∞, xn] at time t and are strictly below βn

for all times in [0, t). Note that Γn is the first-passage distribution associated to boundary βn and Φ
(
xn−βn(h)−µn(t−h)

σn
√
t−h

)
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counts all the Brownian paths which start at βn(h) at time h and lie in (−∞, xn] at time t. Therefore, we obtain

Fn(xn, t) = Φ
(
xn − x0

n − µnt
σn
√
t

)
−
ˆ t

0
Φ
(
xn − βn(h)− µn(t− h)

σn
√
t− h

)
dΓn(h).

Since βn is continuously differentiable, Theorem 5 in Lehmann (2002) implies that Γn is also continuously differentiable,

with derivative γn. We can therefore apply Leibniz’s integral rule to compute the spatial derivative of Fn(xn, t) appearing

in Equation 24:

fn(xn, t) =
∂Fn(xn, t)

∂xn
=

1
σn
√
t
φ

(
xn − x0

n − µnt
σn
√
t

)
−
ˆ t

0

1
σn
√
t− h

φ

(
xn − βn(h)− µn(t− h)

σn
√
t− h

)
γn(h)dh.

An additional differentiation w.r.t. xn yields:

∂fn(xn, t)
∂xn

=
1
σ2
nt
φ′

(
xn − x0

n − µnt
σn
√
t

)
−
ˆ t

0

1
σ2
n(t− h)

φ′
(
xn − βn(h)− µn(t− h)

σn
√
t− h

)
γn(h)dh ≡Mn(xn, t).

The expression defining Mn(xn, t) involves a singular integral and is discontinuous at xn = βn(t). More precisely,

lim
xn↑βn(t)

Mn(xn, t) = 2Mn(βn(t), t).

This can be established rigorously following a Fourier approach as in the proof of Proposition 7 (we omit the details for

brevity). It follows that

1
2

lim
xn↑βn(t)

∂fn(xn, t)
∂xn

= Mn(βn(t), t).

Moreover, using the boundary condition fn(βn(t), t) = 0 and the Kolmogorov Forward Equation, we obtain

γn(t) =
dΓn(t)
dt

=
d

dt
[1− Fn(βn(t), t)] =

d

dt

[
1−
ˆ βn(t)

−∞
fn(xn, t)dxn

]
= −fn(βn(t), t)β

′
n(t)−

ˆ βn(t)

−∞

∂fn(xn, t)
∂t

dxn,

=
ˆ βn(t)

−∞

[
µn

∂fn(xn, t)
∂xn

−
1
2
σ2
n

∂2fn(xn, t)
∂x2
n

]
dxn = lim

xn↑βn(t)

[
µnfn(xn, t)−

1
2
σ2
n

∂fn(xn, t)
∂xn

]
.

Since limxn↑βn(t) µnfn(xn, t) = µnfn(βn(t), t) = 0, it follows that

γn(t) = −
1
2
σ2
n lim
xn↑βn(t)

∂fn(xn, t)
∂xn

= −σ2
nMn(βn(t), t)

=
1
t
φ
(
An(t|x0

n)
)
An(t|x0

n)−
ˆ t

0

1
(t− h)

φ (Bn(t, h))Bn(t, h)γn(h)dh,

where the last equality uses the fact that φ′(z) = −zφ(z) for all z ∈ R on the definition of Mn. Combining the last two

equations, Equation 25 follows immediately.

It remains to establish that Equation 25 has a unique solution. Let δ : [0,+∞)→ [0,+∞) be a continuous function that

also satisfies Equation 25 and define T ∗ ≡ inf {t ≥ 0|δ(t) 6= γn(t)}. Assume, seeking a contradiction, that T ∗ < +∞. Choose

some, for now, arbitrary ε > 0. Since β is continuously differentiable, m(ε) ≡ supt∈[T∗,T∗+ε] |dβ(t)/dt| < +∞. Moreover,

it is easy to show that |Bn(t, h)| ≤ σ−1 (µ+m(ε))
√
t− h. It follows that ‖δ − γn‖[0,T∗+ε] ≡ supt∈[0,T∗+ε] |δ(t)− γn(t)| ≤

L(ε) ‖δ − γn‖[0,T∗+ε], where L(ε) ≡ 2φ (0)σ−1 (µ+m(ε))
√
ε is continuous and increasing in ε. Since L(0) = 0, choosing ε

sufficiently small, we have L(ε) < 1. It follows that ‖δ − γn‖[0,T∗+ε] = 0, which implies δ(t) = γn(t) for all t ∈ [0, T ∗ + ε],

yielding the desired contradiction. �

Proof of Proposition 7. The value function satisfies

(r + λn(t))Vn = µn
∂Vn

∂xn
+

1
2
σ2
n

∂2Vn

∂x2
n

+
∂Vn

∂t
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for all (x, t) in the continuation region. Define an auxiliary function Ṽn by setting Ṽn(xn, t) ≡ Vn(xn, t)1{xn < βn(t)} for

each (xn, t) ∈ R × R+. Since βn(t) ∈
[
Kn, βn

]
by Proposition 2, the auxiliary function Ṽn(·, t), unlike the value function

itself, is absolutely integrable for every t ≥ 0:

ˆ +∞

−∞

∣∣Ṽn(xn, t)
∣∣ dxn ≤ ˆ βn(t)

−∞
Vn(xn, t)dxn ≤

ˆ βn
−∞

V n(xn)dxn = ξ−2
n < +∞,

where V n is the value that Player n would obtain as a monopolist and ξn is the only positive root of equation (1/2)σ2
nξ

2
n +

µnξn − r = 0. Let Ln denote the Fourier transform of Ṽn:

Ln ≡ Ln(ω, t) ≡
ˆ +∞

−∞
e−iωxn Ṽn(xn, t)dxn =

ˆ βn(t)

−∞
e−iωxnVn(xn, t)dxn.

Using the HJB equation, value-matching, and smooth pasting, it is easy to verify that Ln satisfies the ODE

∂Ln

∂t
= δnLn − ψn,

where δn ≡ δn(ω, t) ≡ r + λn(t) + 1
2σ

2
nω

2 − µniω and

ψn ≡ ψn(ω, t) ≡ e−iωβn(t)
[(
µn +

1
2
σ2
niω − β

′
n(t)
)

(βn(t)−Kn) +
1
2
σ2
n

]
.

Since Vn converges, the ODE above has a unique forward solution:

Ln(ω, t) =
ˆ ∞
t

e−
´h
t δn(ω,s)dsψ(ω, h)dh.

We now proceed to invert this transform using standard inversion formulas. Exchanging the order of integrals, we can write:

1
2π

ˆ +∞

−∞
eiωxLn(ω, t)dω =

ˆ ∞
t

(
1

2π

ˆ +∞

−∞
eiωxn

[
e−
´h
t δn(ω,s)dsψ(ω, h)

]
dω

)
dh,

=
ˆ ∞
t

e−ρn(h,t)
(

1
2π

ˆ +∞

−∞
eiωxn

[
eµn(h−t)iω− 1

2σ
2
n(h−t)ω2

ψ(ω, h)
]
dω

)
dh.

Thus, we only need to compute the Fourier inverse

1
2π

ˆ +∞

−∞
eiωxn

[
eµn(h−t)iω− 1

2σ
2
n(h−t)ω2

ψ(ω, h)
]
dω =

ˆ +∞

−∞
e−Aω

2+Bω (Cω +D) dω,

whereA ≡ 1
2σ

2
n(h−t), B ≡ [xn − βn(h) + µn(h− t)] i, C ≡ 1

4πσ
2
n (βn(h)−Kn) i, andD ≡ 1

2π

[(
µn − dβn(h)

dh

)
(βn(h)−Kn) + 1

2σ
2
n

]
.

It is easy to show that ˆ +∞

−∞
e−Aω

2+Bω (Cω +D) dω = e
B2
4A

√
π

A

(
BC

2A
+D

)
.

Note that

e
B2
4A = e

− 1
2

(
βn(h)−xn−µn(h−t)

σn
√
h−t

)2

=
√

2πφ
(
βn(h)− xn − µn(h− t)

σn
√
h− t

)
,

and
BC

2A
+D =

1
4π

{
σ2
n +
[(

βn(h)− xn
h− t

)
− 2

dβn(h)
dh

+ µn

]
(βn(h)−Kn)

}
.

Thus,

e
B2
4A

√
π

A

(
BC

2A
+D

)
=
φ

(
βn(h)−xn−µn(h−t)

σn
√
h−t

)
2σn
√
h− t

{
σ2
n +
[(

βn(h)− xn
h− t

)
− 2

dβn(h)
dh

+ µn

]
(βn(h)−Kn)

}
.

From the theory of Fourier transforms, we know that

Ṽn(xn−, t) + Ṽn(xn+, t)
2

=
ˆ ∞
t

e−ρn(h,t)e
B2
4A

√
π

A

(
BC

2A
+D

)
dh
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for all xn ∈ R. On the one hand, in the no-exercise region, we have Ṽn(·, t) = Vn(·, t). Thus, Equation 28 follows immediately

from continuity of the value function. On the other hand, when xn = βn(t), we have

Ṽn(xn−, t) + Ṽn(xn+, t)
2

∣∣∣∣
xn=βn(t)

=
Vn(βn(t)−, t) + 0

2
=

1
2
Vn(βn(t), t)

by definition of Ṽn and value-matching. As a result,

Vn(βn(t), t) = 2 e
B2
4A

√
π

A

(
BC

2A
+D

)∣∣∣
xn=βn(t)

.

Evaluating the formula for the right-hand-side, we obtain Equation 27. �

Appendix S4. Basic Properties of the Value Function.

In this subsection, we establish elementary properties of equilibrium value functions that are used throughout the main

text. To this purpose, we consider the value function of a general nonstationary optimal stopping problem that nests

equilibrium values of our game as a particular case. In order to make this section self-contained, we define the relevant

notation. Let {Z(t)}t≥0 be a standard Brownian motion on a filtered probability space satisfying the usual conditions. Let

{Xx(t)}t≥0 denote the Ito process given by Xx(t) = x+µt+σZ(t) for µ, σ > 0, let K > 0, and let G be a CDF on [0,+∞]

such that G(t) < 1 for all t < +∞.

Let S be the set of all stopping times taking values in [0,+∞]. Define W : R× R+ × S → R by setting

W (x, t, τ) ≡ E
{
e−rτ

(1−G(t+ τ)
1−G(t−)

)
(Xx(τ)−K)

}
for each (x, t, τ) ∈ R×R+×S, where G(t−) := lim∆t↓0G(t−∆t). Note that, in our competitive option game, W represents

the payoff of a player employing strategy τ when G is the distribution of the random arrival of his or her defeat (given the

behavior of the opponents). Define also V : R× R+ → R by setting, for each x ∈ R and t ∈ R+,

V (x, t) ≡ sup
τ∈S

W (x, t, τ).

Lemma 17. For every t ∈ R+, we have limx→−∞ V (x, t) = 0 and V (x, t) = x −K for all x ≥ β ≡ K + 1/ξ, where ξ is

the positive root of (1/2)σ2ξ2 + µξ − r = 0.

Proof. Every stopping time τ such that X(τ) < K with positive probability is strictly dominated. Since τ ≥ 0 and G

is a CDF, we must have G(t + τ) ≥ G(t) ≥ G(t−), which implies 1−G(t+τ)
1−G(t−) ≤ 1. This means that, for any stopping

time τ that is not strictly dominated, we have e−rτ
( 1−G(t+τ)

1−G(t−)

)
(X(τ)−K) ≤ e−rτ (X(τ)−K) almost surely. It follows

that V (x, t) ≤ V (x) < +∞, where V is the value function of a monopolist. As an immediate consequence, we have

limx→−∞ V (x, t) ≤ limx→−∞ V (x) = 0. Finally, note that V (x, t) ≥ x −K holds for all x ∈ R since we can always stop

immediately. Moreover, V (x) = x −K for all for x ≥ β. We conclude that x −K ≤ V (x, t) ≤ x −K for all x ≥ β, which

proves the second claim. �

Lemma 18. For every t ∈ R+, V (·, t) is convex.

Proof. Consider some arbitrary fixed time t ∈ R+. Let x, y ∈ R, α ∈ [0, 1] and τ ∈ S. From the definition of W , we have

W (αx+ (1− α)y, t, τ) = αW (x, t, τ) + (1− α)W (y, t, τ). Thus, we have

V (αx+ (1− α)y, t) = sup
τ

W (αx+ (1− α)y, t, τ) = sup
τ

{αW (x, t, τ) + (1− α)W (y, t, τ)}

≥ α sup
τ

W (x, t, τ) + (1− α) sup
τ

W (y, t, τ) ≥ αV (x, t) + (1− α)V (y, t).

This means that V (·, t) is convex for all t ∈ R+, as claimed. �

Lemma 19. For every t ∈ R+, V (·, t) is increasing.
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Proof. For any (x, t) ∈ R× R+ and any stopping time τ , we have

W (x, t, τ) = E
{
e−rτ

(1−G(t+ τ)
1−G(t−)

)
(x+ µτ + σZ(τ)−K)

}
.

Now consider x, y ∈ R such that x > y. By definition of V (x, t) and V (y, t), there exists two sequence of stopping times

{τxn}n∈N and {τyn}n∈N such that limn→+∞W (x, t, τxn ) = V (x, t) and limn→+∞W (y, t, τyn) = V (y, t). Using the definition

of W , it is easy to see that W (x, t, τyn) = W (y, t, τyn) + E
{
e−rτ

y
n

}
(x − y). Note that, for every stopping time τ , we have

V (x, t) ≥ W (x, t, τ). Since limn→+∞W (x, t, τxn ) = V (x, t) by construction, we must have W (x, t, τxn ) ≥ W (x, t, τyn) for all

large enough n. It follows that W (x, t, τxn )−W (y, t, τyn) ≥ E
{
e−rτ

y
n

}
(x− y) ≥ 0 for all large enough n. Taking the limit

as n→ +∞, we get V (x, t)− V (y, t) ≥ 0. This shows that V is nondecreasing.

To show that V is increasing, suppose, seeking a contradiction, that V (x, t) = V (y, t). Then, by Lemma 17, there exists

z ∈ R such that z < y and V (z, t) < V (x, t). Since we can write y = αx + (1 − α)z for α ≡ (x − z)−1(y − z) ∈ (0, 1), we

have V (αx+ (1− α)z, t) = V (y, t) = V (x, t) > αV (x, t) + (1− α)V (z, t), contradicting Lemma 18. �

Lemma 20. For every x, y ∈ R and t ∈ R+, |V (x, t)− V (y, t)| ≤ |x− y|

Proof. Without loss of generality, suppose that x > y. By Lemma 19, it then suffices to show V (x, t)−V (y, t) ≤ x− y. Let

{τxn}n∈N and {τyn}n∈N be as in the proof of Lemma 19. Then, we have

W (x, t, τxn ) = W (y, t, τxn ) + E
{
e−rτ

x
n

}
(x− y).

Since W (y, t, τyn)→ V (y, t), we must have W (y, t, τxn ) ≤W (y, t, τyn) for all sufficiently large n. It follows that

W (x, t, τxn ) ≤W (y, t, τyn) + E
{
e−rτ

x
n

}
(x− y) ≤W (y, t, τyn) + x− y.

for all sufficiently large n. Taking the limit as n→ +∞, we get V (x, t)− V (y, t) ≤ x− y, as desired. �

Lemma 21. For every (x, t) ∈ R× R+, lim infy→x
∆t↓0

V (y, t+ ∆t) ≥ V (x, t).

Proof. By definition, we have

V (x, t) = sup
τ

E
{
e−rτ

(1−G(t+ τ)
1−G(t−)

)
(Xx(τ)−K)1τ<∆t + e−r∆t

(1−G(t+ ∆t−)
1−G(t−)

)
V (Xx(∆t), t+ ∆t)1τ≥∆t

}
,

≤ sup
τ

E
{

(x+ Y (τ)−K)1τ<∆t + V (x+ Y (∆t), t+ ∆t)1τ≥∆t
}
,

where we define Y (τ) := µτ + σZ(τ). Note that V (x + Y (∆t), t + ∆t) ≤ V (x, t + ∆t) + |Y (∆t)|. Moreover, noting that

τ < ∆t implies E {|Y (τ)|} ≤ E {|Y (∆t)|}, we conclude that

V (x, t) ≤ sup
τ

E
{

(x−K)1τ<∆t + V (x, t+ ∆t)1τ≥∆t + |Y (∆t)|
}
,

≤ max {x−K,V (x, t+ ∆t)}+ E {|Y (∆t)|} ,

≤ V (x, t+ ∆t) + E {|Y (∆t)|} ,

where we used the inequality V (x, t + ∆t) ≥ x−K implied by Lemma 17. Since V (x, t + ∆t) ≤ V (y, t + ∆t) + |x− y| by

Lemma 20, we can write

V (x, t) ≤ V (y, t+ ∆t) + |x− y|+ E {|Y (∆t)|}

Considering that lim∆t↓0 E {|Y (∆t)|} = 0, we have

V (x, t) ≤ lim inf
y→x
∆t↓0

V (y, t+ ∆t) + lim
y→x
|x− y|+ lim

∆t↓0
E {|Y (∆t)|} = lim inf

y→x
∆t↓0

V (y, t+ ∆t),

proving the claim. �

Lemma 22. For every (x, t) ∈ R× R+, lim infy→x
∆t↓0

V (y, t−∆t) ≥ V (x, t).
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Proof. For any ∆t > 0, we have

V (x, t−∆t) ≥ e−r∆t
( 1−G(t−)

1−G(t−∆−)

)
E {V (Xx(∆t), t)} ,

since we can always choose not to exercise an option during the time interval [t−∆, t]. Since V (·, t) is convex by Lemma 18,

Jensen’s inequality implies that

V (x, t−∆t) ≥ e−r∆t
( 1−G(t−)

1−G(t−∆t−)

)
V (x+ µ∆t, t),

where we used E {Xx(∆t)} = E {x+ µ∆t+ σZ(∆t)} = x + µ∆t. Moreover, since V (·, t) is nondecreasing by Lemma 19

and µ∆t > 0, we have V (x+ µ∆t, t) ≥ V (x, t). Therefore,

V (x, t−∆t) ≥ e−r∆t
( 1−G(t−)

1−G(t−∆t−)

)
V (x, t),

V (x, t) ≤ er∆t
(1−G(t−∆t−)

1−G(t−)

)
V (x, t−∆t).

By Lemma 20, V (y, t−∆t) ≥ V (x, t−∆t)− |y − x|. It follows that

V (y, t−∆t) ≥ e−r∆t
( 1−G(t−)

1−G(t−∆t−)

)
V (x, t)− |y − x|

and so

lim inf
y→x
∆t↓0

V (y, t−∆t) ≥ lim
y→x
∆t↓0

{
e−r∆t

( 1−G(t−)
1−G(t−∆t−)

)
V (x, t)− |y − x|

}
= V (x, t),

as claimed. �

Lemma 23. For every (x, t) ∈ R× R+, lim supy→x
∆t↓0

V (y, t−∆t) ≤ V (x, t).

Proof. As in the proof of Lemma 21, for every ∆t > 0, we have V (y, t −∆t) ≤ V (x, t) + |y − x| + E {|Y (∆t)|}. It follows

that

lim sup
y→x
∆t↓0

V (y, t−∆t) ≤ V (x, t) + lim
y→x
|y − x|+ lim

∆t↓0
E {|Y (∆)|} = V (x, t),

as claimed. �

Lemma 24. For every (x, t) ∈ R× R+, limy→x
∆t↓0

V (y, t−∆t) = V (x, t).

Proof. Lemmas 22 and 23 imply that

lim sup
y→x
∆t↓0

V (y, t−∆t) ≤ V (x, t) ≤ lim inf
y→x
∆t↓0

V (y, t−∆t).

Since, in general, we have lim infy→x
∆t↓0

V (y, t−∆t) ≤ lim supy→x
∆t↓0

V (y, t−∆t), we conclude that limy→x
∆t↓0

V (y, t−∆t) exists

and is equal to V (x, t), as claimed. �

For every t ∈ R+, define the boundary β∗ by setting:

β∗(t) := inf {x ∈ R|V (x, t) ≤ x−K} .

Lemma 25. For every t ∈ R+, we have V (x, t) = x − K for all x ≥ β∗(t), V (x, t) > x − K for all x < β∗(t), and

β∗(t) = sup {x ∈ R|V (x, t) > x−K}.

Proof. By definition of β∗(t), there is a decreasing sequence {xn}n∈N such that limn→+∞ xn = β∗(t) and V (xn, t) ≤ xn−K.

Since Lemma 18 implies that V (·, t) is continuous, we have V (β∗(t), t)− [β∗(t)−K] = limn→+∞ [V (xn, t)− (xn −K)] ≤ 0,

which implies that V (β∗(t), t) ≤ β∗(t)−K. Since Lemma 17 implies that V (x, t) ≥ x−K for all x ∈ R, we conclude that

V (β∗(t), t) = β∗(t)−K.
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We just proved that V (β∗(t), t) = β∗(t) −K. Moreover, Lemma 17 implies that V (x, t) = x −K for all x ≥ β. These

two facts combined with the convexity of V (·, t) obtained in Lemma 18 imply that V (x, t) ≤ x−K for all x ∈ [β∗(t), β]. It

follows (using Lemma 17 again) that the first claim holds: V (x, t) = x−K for all x ≥ β∗(t). Given this result, the definition

of β∗(t) directly implies the second claim. Finally, sup {x ∈ R|V (x, t) > x−K} = sup(−∞, β∗(t)) = β∗(t), completing the

proof. �

For each (x, t) ∈ R× R+, define the following random time:

τ∗(x, t) := inf {h > 0|V (Xx(h), t+ h) ≤ Xx(h)−K} .

Then, we have the following:

Lemma 26. For every (x, t) ∈ R× R+, τ∗(x, t) is a stopping time.

Proof. Fix any (x, t) ∈ R×R+. Define the process {M(x,t)(h)}h≥0 by setting M(x,t)(h) := V (Xx(h), t+h)− [Xx(h)−K]

for each h ≥ 0. Note that τ∗(x, t) is the hitting time of (−∞, 0] by {M(x,t)(h)}h≥0. {M(x,t)(h)}h≥0 is adapted (w.r.t

the filtration generated by {Xx(h)}h≥0). Moreover, since V is continuous in the first argument and continuous from the

left in the second argument by Lemma 24, {M(x,t)(h)}h≥0 has left-continuous paths. It follows that {M(x,t)(h)}h≥0 is

progressively measurable. Thus, by the Debut theorem, τ∗(x, t) is a stopping time. �

Lemma 27. For every (x, t) ∈ R× R+, τ∗(x, t) is an optimal stopping time, in the sense that W (x, t, τ∗(x, t)) = V (x, t).

Moreover, for all t ∈ R+, we have

inf {h > 0|Xx(h) ≥ β∗(t+ h)} = τ∗(x, t),

so β∗ is an optimal stopping boundary.

Proof. For any stopping time τ̃ , we can write

V (x, t) = sup
τ

E
{
e−rτ

(1−G(t+ τ)
1−G(t−)

)
(Xx(τ)−K)1τ<τ̃ + e−rτ̃

(1−G(t+ τ̃−)
1−G(t−)

)
V (Xx(τ̃), t+ τ̃)1τ≥τ̃

}
.

In particular, since τ∗(x, t) is a stopping time by Lemma 26, we can choose τ̃ = τ∗ ≡ τ∗(x, t). In that case, any stopping

time τ such that τ < τ∗ with positive probability stops too soon and yields a payoff smaller than the one obtained by using

max{τ, τ∗} instead. Intuitively, note that τ < τ∗ implies that Xx(τ) −K < V (Xx(τ), t + τ), so stopping at τ is strictly

worse than continuation. It follows that

V (x, t) = sup
τ

E
{
e−rτ

∗
(1−G(t+ τ∗−)

1−G(t−)

)
V (Xx(τ∗), t+ τ∗)1τ≥τ∗

}
.

Since all three factors multiplying the indicator 1τ≥τ∗ are positive, it is clear that the supremum is attained by setting

τ = τ∗ almost surely. Therefore,

V (x, t) = E
{
e−rτ

∗
(1−G(t+ τ∗−)

1−G(t−)

)
V (Xx(τ∗), t+ τ∗)

}
= W (x, t, τ∗(x, t)).

For the second claim, it suffices to note that, for every h ≥ 0, Lemma 25 implies that the event Xx(h) ≥ β∗(t + h) is

equivalent to V (Xx(h), t+ h) ≤ Xx(h)−K. �

Lemma 28. For every t ∈ R+, lim inf∆t↓0 β
∗(t+ ∆t) ≥ β∗(t).

Proof. Let {tn}n∈N be an arbitrary sequence of times such that tn ↓ t. For each n ∈ N, define bn := β∗(tn). To establish

the claim, it is sufficient to show that liml→+∞ bnl ≥ β∗(t) for every convergent subsequence {bnl}s∈N. For each l ∈ N,

Lemma 25 implies that bnl −K = V (bnl , tnl ). Defining b̂ := liml→+∞ bnl , we have

b̂−K = lim
l→+∞

(bnl −K) = lim
l→+∞

V (bnl , tnl ) = lim inf
l→+∞

V (bnl , tnl ) ≥ V (b̂, t),
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where the last inequality follows from Lemma 21. By Lemma 25, the inequality b̂ − K ≥ V (b̂, t) implies that b̂ ≥ β∗(t).

We conclude that lim infn→+∞ β∗(tn) ≥ β∗(t) and, since {tn}n∈N is an arbitrary monotonic sequence, the claim follows

immediately. �

Lemma 29. For every t ∈ R+, lim inf∆t↓0 β
∗(t−∆t) ≥ β∗(t).

Proof. This result is established by replicating the argument in Lemma 28, choosing a sequence of times {tn}n∈R such that

tn ↑ t instead of tn ↓ t and using Lemma 22 instead of Lemma 21 to show that lim infl→+∞ V (bnl , tnl ) ≥ V (b̂, t). The

remainder of the proof is identical. �

Lemma 30. β∗ is lower-semicontinuous: lim infs→t β∗(s) ≥ β∗(t) for all t ∈ R+.

Proof. It follows from the combination of Lemmas 28 and 29. �

Let BLSC be the set of all lower-semicontinuous functions [0,+∞) → R. Define also the first-passage time of the

conditional state through boundary β ∈ BLSC by

τx,t
β

:= inf {h > 0|Xx(h) ≥ β(t+ h)}

and let Px,t
β

be its CDF:

Px,t
β

(h) := P
{
τx,t
β
≤ h
}

for every h ≥ 0. Moreover, define a function U : R× R+ × BLSC → R by setting, for each (x, t, β) ∈ R× R+ × BLSC ,

U(x, t, β) :=
ˆ +∞

0
e−rh

(1−G(t+ h)
1−G(t−)

)
(β(t+ h)−K)Px,t

β
(dh).

With this definitions, we have obviously have the payoff equivalence U(x, t, β) ≡ W
(
x, t, τx,t

β

)
for all (x, t, β) ∈ R× R+ ×

BLSC .

Lemma 31. For every (x, t) ∈ R× R+,

V (x, t) = U(x, t, β∗) = max
β∈BLSC

U(x, t, β).

Proof. We start by showing that V (x, t) ≥ U(x, t, β) for all β ∈ BLSC . Pick any β ∈ BLSC . Since β is lower semicontinuous,

it is measurable. It follows that {Xx(h)−β(t+h)}h≥0 is a progressively measurable process for every (x, t) ∈ R×R+. Thus,

by the Debut theorem, the random time τx,t
β

is a stopping time. This implies, by definition, that V (x, t) ≥W
(
x, t, τx,t

β

)
=

U(x, t, β).

Note that β∗ is lower semicontinuous by Lemma 30. Hence, β∗ ∈ BLSC . Since V (x, t) = W (x, t, τ∗(x, t)) = U(x, t, β∗)

by Lemma 27, the proof is complete. �

Appendix S5. Additional Cross-Industry Comparison

Increased randomness in payoff evolution. In this supplementary simulation, we study comparisons between a sym-

metric industry with a lower exposure to randomness in the payoff process (labeled original equilibrium in Figure S1) and

one with a higher level (labeled new equilibrium). This enhanced effect of uncertainty can originate from higher uncertainty

in the product development stage, for instance. Importantly, if one calibrates parameters to match a higher probability of

failure (no exercise) for a given number of years for a specific industry, volatility is increased.

We notice that the increased volatility raises the option value from delayed entry, leading to less aggressive exercise

strategies. The traditional intuition from non-competitive environments is exhibited in the line marked as partial equilib-

rium, in the left panel, as it ignores the change in competition but takes into account the consequences of an increased

volatility in a firm’s own product development process.

As the right-hand-side panel indicates, in the short-run, the direct effect of a higher volatility pushing agents more strongly

against any given exercise threshold dominates, thereby increasing short-run exercise rates despite the less aggressive exercise
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Figure S1. A cross industry comparison between a high volatility industry (new equilibrium) and a
lower volatility one (original equilibrium). Partial equilibrium refers to a situation in which beliefs
about opponents exercise rates are kept fixed at the original equilibrium, but the new level for one’s own
volatility is taken into account. The arrows and dotted lines indicate asymptotic limits.

strategies. In the long-run, however, more volatility means that an opponent that has not previously exercised an entry

option is very unlikely to be close to exercising it in the near future. As a consequence, long-run competition becomes

less intense in more volatile industries. We can, therefore, conclude that the equilibrium effects from more volatile product

development conditions are asymmetric over time, as higher uncertainty tends to intensify entry and competition in the

short-run, while having the opposite effect in case entry is not observed in the initial years.
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